Vehicle direction identification consists of three module detection , tracking and direction recognization.

Overview

Vehicle-direction-identification

Vehicle direction identification consists of three module detection , tracking and direction recognization.

Algorithm used : Yolo algorithm for detection + SORT algorithm to track vehicles + vector based direction detection

Backend : opencv and python

Library required:

  • opencv = '4.5.4-dev'
  • scipy = '1.4.1'
  • filterpy
  • lap
  • scikit-image

IMPORTANT:

  • I hadn't uploaded model weights and configuration files (which were used for object detection) here because those were already available in yolo_detection repo
  • download yolo tiny weights , config file and coco.names file from here : [https://github.com/hasit73/yolo_detection]
  • For detection i was using same code which was available in yolo_detection repo.

Quick Overview about structure

1) main.py

  • Loading model and user configurations
  • perform io interfacing tasks

2) yolo.py

  • use opencv modules to detect objects from user given media(photo/video)
  • detection take place inside this file

3) config.json

  • user configuration are mentioned inside this file
  • for examples : input shapes and model parameters(weights file path , config file path etc) are added in config.json

4) tracker.py

  • it have one Tracker class that will be used to track vehicles.

5) sort.py

  • SORT algorithm implementations
  • Kalman filter operations

6) vehicle_direction.py

  • Vector based direction recognization

How to use

  1. clone this directory

  2. use following command to run detection and tracking on your custom video

python main.py -c config.json -v 
   

   

Example:

python main.py -c config.json -v car1.mp4
  • Note : Before executing this command make sure that you have downloaded model weights and config file for yolo object detection.

Results

  • output
demo.mp4

Limitations:

There are few primary drawbacks of this appoach

  1. direction recogization totally depends on detection and tracking.

  2. if camera properly arranged then it gives accurate results (Suppose any object is in front of camera and come forward towards camera then it gives bad results) but if you try to use this approach in cctv suviellence then it gives satisfactory results.

  3. in few cases , it performs bad, because right now it works on only single keypoint (center of object) we can improve its performace by detecting multiple keypoints and use majority votes result.

If it's helful for you then please give star :)

Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022