Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

Overview

FLASH - Pytorch

Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time

Install

$ pip install FLASH-pytorch

Usage

The main novel circuit in this paper is the "Gated Attention Unit", which they claim can replace multi-headed attention while reducing it to just one head.

It uses a relu squared activation in place of the softmax, the activation of which was first seen in the Primer paper, and the use of ReLU in ReLA Transformer. The gating style seems mostly inspired by gMLPs.

import torch
from flash_pytorch import GAU

gau = GAU(
    dim = 512,
    query_key_dim = 128,     # query / key dimension
    causal = True,           # autoregressive or not
    expansion_factor = 2,    # hidden dimension = dim * expansion_factor
)

x = torch.randn(1, 1024, 512)
out = gau(x) # (1, 1024, 512)

The authors then combine GAU with Katharopoulos linear attention, using grouping of the sequences to overcome a known issue with autoregressive linear attention.

This combination of the quadratic gated attention unit with grouped linear attention they named FLASH

You can also use this quite easily

import torch
from flash_pytorch import FLASH

flash = FLASH(
    dim = 512,
    group_size = 256,             # group size
    causal = True,                # autoregressive or not
    query_key_dim = 128,          # query / key dimension
    expansion_factor = 2.         # hidden dimension = dim * expansion_factor
)

x = torch.randn(1, 1111, 512)     # sequence will be auto-padded to nearest group size
out = flash(x) # (1, 1111, 512)

Finally, you can use the full FLASH transformer as mentioned in the paper. This contains all the positional embeddings mentioned in the paper. Absolute positional embedding uses scaled sinusoidal. GAU quadratic attention will get one-headed T5 relative positional bias. On top of all this, both GAU attention as well as the linear attention will be rotary embedded (RoPE).

import torch
from flash_pytorch import FLASHTransformer

model = FLASHTransformer(
    num_tokens = 20000,          # number of tokens
    dim = 512,                   # model dimension
    depth = 12,                  # depth
    causal = True,               # autoregressive or not
    group_size = 256,            # size of the groups
    query_key_dim = 128,         # dimension of queries / keys
    expansion_factor = 2.,       # hidden dimension = dim * expansion_factor
    norm_type = 'scalenorm',     # in the paper, they claimed scalenorm led to faster training at no performance hit. the other option is 'layernorm' (also default)
    shift_tokens = True          # discovered by an independent researcher in Shenzhen @BlinkDL, this simply shifts half of the feature space forward one step along the sequence dimension - greatly improved convergence even more in my local experiments
)

x = torch.randint(0, 20000, (1, 1024))
logits = model(x) # (1, 1024, 20000)

Test on Autoregressive Enwik8

$ python train.py

Citations

@article{Hua2022TransformerQI,
    title   = {Transformer Quality in Linear Time},
    author  = {Weizhe Hua and Zihang Dai and Hanxiao Liu and Quoc V. Le},
    journal = {ArXiv},
    year    = {2022},
    volume  = {abs/2202.10447}
}
@software{peng_bo_2021_5196578,
    author    = {PENG Bo},
    title     = {BlinkDL/RWKV-LM: 0.01},
    month     = {aug},
    year      = {2021},
    publisher = {Zenodo},
    version   = {0.01},
    doi       = {10.5281/zenodo.5196578},
    url       = {https://doi.org/10.5281/zenodo.5196578}
}
Comments
  • einsum operation in Linear Attention Part

    einsum operation in Linear Attention Part

    Hi, Thanks a lot for your FLASH_pytorch, which helps a lot. I found that there are some differences from the paper in the Linear Attention Part: https://github.com/lucidrains/FLASH-pytorch/blob/main/flash_pytorch/flash_pytorch.py#L342-L343

    lin_kv = einsum('b g n d, b g n e -> b d e', lin_k, v) / n
    lin_out = einsum('b g n d, b d e -> b g n e', lin_q, lin_kv)
    

    the lin_kv is three-dim (bde) And the code in the paper is

    lin_kv = tf.einsum('bhke,bgh→bgke', lin_kv, mask) 
    linear = tf.einsum('bgnk,bgke→bgne', lin_q, lin_kv)
    

    the lin_kv is four-dim (bgke) It seems that the two ways are not equivalent.

    Looking forward to your reply. Best,

    opened by ShomyLiu 5
  • mask error

    mask error

    x = torch.randint(0, 20000, (1, 1024))
    mask = x.ne(0)
    logits = model(x, mask=mask)
    

    RuntimeError: The size of tensor a (1024) must match the size of tensor b (128) at non-singleton dimension 2

    opened by keyunluo 1
  • Speed on TPU

    Speed on TPU

    Hi, Thanks for the code! I test it on Google TPU v3, the training speed seems slower than my expectation. Maybe there is some operation which is not lower on TPU.

    opened by magicknight 0
  • About the

    About the "shift_tokens"

    Thank you for your amazing code.

    In the class of FLASH, I find a flag: shift_tokens, and the corresponding code is as following: if self.shift_tokens: x_shift, x_pass = normed_x.chunk(2, dim = -1) x_shift = F.pad(x_shift, (0, 0, 1, -1), value = 0.) normed_x = torch.cat((x_shift, x_pass), dim = -1)

    Assume we have normed_x in the shape [1024, 512], the x_shift/x_pass is the shape of [1024, 256]. Then it adds a row (with all 0 value) and remove the last row in the x_shift, and concat x_shift and x_pass to get the normed_x.

    In my opinion, the F.pad operation will make the row in x_shift and x_pass do not match again.

    May I know why it works?

    Kang

    opened by kangzhao2 1
  • Cross-Attention?

    Cross-Attention?

    Hi, @lucidrains. Thank you for sharing this excellent implementation with us all! Do you have any thoughts as to what changes would need to be made to make cross-attention possible with your FLASH model?

    opened by amorehead 2
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022