Unofficial PyTorch implementation of Guided Dropout

Overview

Unofficial PyTorch implementation of Guided Dropout

This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm according to the paper published in AAA-19, but we can't guarantee the performance reported in the paper. We will list some experiment results soon.

TODO

  • Release the reproduced code
  • list experiment results
  • ...

Setup

pip install -r requirements.txt

Run

  1. Run Guided Dropout on CIFAR10 Dataset (mlp 3 hidden layers with 1024 nodes)
python mainpro.py --dataset CIFAR10 --arc mlp --mlp-depth 3 --hidden-dim 1024 -e 200 --lr 0.01 --exp-name mlp-1024-3-guided-dropout-cifar10
  1. Run Original Dropout on Fashionmnist Dataset (mlp 3 hidden layers with 8192 nodes)
python mainpro.py --dataset Fashionmnist --arc mlp --mlp-depth 3 --hidden-dim 8192 -e 200 --lr 0.01 --exp-name mlp-8192-3-original-dropout-cifar10 --drop-type Dropout --drop-rate 0.2
  1. Run Guided Dropout on CIFAR100 Dataset (ResNet-18)
python mainpro.py --dataset CIFAR100 --arc ResNet18 -e 200 --lr 0.01 --exp-name resnet18-guided-dropout-cifar100 --drop-type GuidedDropout --drop-rate 0.2

Result

CIFAR10

Algorithm MLP-1024-3 MLP-2048-3 MLP-4096-3 MLP-8192-3 ResNet18
Non Dropout - - - - -
Original Dropout - - - - -
Guided Dropout (top-k) * 58.75 59.65 59.64 59.92 94.02
Guided Dropout (DR) * 59.84 60.12 60.89 61.32 94.12
Guided Dropout - - - - -
Guided Dropout - - - - -

* means the result listed in the paper

CIFAR100

Algorithm MLP-1024-3 MLP-2048-3 MLP-4096-3 MLP-8192-3 ResNet18
Non Dropout - - - - -
Original Dropout - - - - -
Guided Dropout (top-k) * 30.92 31.59 31.34 32.11 76.98
Guided Dropout (DR) * 31.88 32.78 33.01 33.15 77.52
Guided Dropout - - - - -
Guided Dropout - - - - -
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022