Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Overview

Fast mesh denoising with data driven normal filtering using deep variational autoencoders

This is an implementation for the paper entitled "Fast mesh denoising with data driven normal filtering using deep variational autoencoders" published in IEEE Transactions on Industrial Informatics 10.1109/TII.2020.3000491

https://ieeexplore.ieee.org/document/9110709

Description

Recent advances in 3D scanning technology have enabled the deployment of 3D models in various industrial applications like digital twins, remote inspection and reverse engineering. Despite their evolving performance, 3D scanners, still introduce noise and artifacts in the acquired dense models. In this work, we propose a fast and robust denoising method for dense 3D scanned industrial models. The proposed approach employs conditional variational autoencoders to effectively filter face normals. Training and inference are performed in a sliding patch setup reducing the size of the required training data and execution times. We conducted extensive evaluation studies using 3D scanned and CAD models. The results verify plausible denoising outcomes, demonstrating similar or higher reconstruction accuracy, compared to other state-of-the-art approaches. Specifically, for 3D models with more than 1e4 faces, the presented pipeline is twice as fast as methods with equivalent reconstruction error.

Requirements

  1. Tensorflow
  2. Numpy
  3. Pickle
  4. Matplotlib
  5. SKLearn
  6. Scipy
  7. Gzip
  8. Random

Overview

Pipeline of the proposed approach and training scheme of the CVAE Pipeline

Training

Running the code

Train with groundtruth data

 python fastMeshDenoising_CVAE_Train.py

Inference

python fastMeshDenoising_CVAE_Test_On_The_Fly.py

The generated model can be found in

./results/Comparison/Denoised/CVAE/

Notes

Repository with full code and data

https://gitlab.com/vvr/snousias/fast-mesh-denoising

Structure

./data/
./images/
./meshes/
./results/
./sessions/
commonReadModelV3.py
CVAE.py
CVAEplot.py
CVAEutils.py
fastMeshDenoising*.py

Select a model from a list of models

Models in .obj format are found in./meshes/

trainModels = [
           'block',
           'casting',
           'coverrear_Lp',
           'ccylinder',
           'eight',
           'joint',
           'part-Lp',
           'cad',
           'fandisk',
           'chinese-lion',
           'sculpt',
           'rockerarm',
           'smooth-feature',
           'trim-star',
           'gear',
           'boy01-scanned',
           'boy02-scanned',
           'pyramid-scanned',
           'girl-scanned',
           'cone-scanned',
           'sharp-sphere',
           'leg',
           'screwdriver',
           'carter100K',
           'pulley',
           'pulley-defects'
           ]

Training set

Training set comprises of the first eight models in fastMeshDenoising_Config_Train.py

trainSet=range(0, 8)

###Testing model Testing model is defined by flag "selectedModel" in fastMeshDenoising_CVAE_Test_On_The_Fly.py

selectedModel = 10

Citation info

Citation

S. Nousias, G. Arvanitis, A. Lalos, and K. Moustakas, “Fast mesh denoising with data driven normal filtering using deep variational autoencoders,” IEEE Trans. Ind. Informatics, pp. 1–1, 2020.

Bibtex

@article{Nousias2020,
    author = {Nousias, Stavros and Arvanitis, Gerasimos and Lalos, Aris and Moustakas, Konstantinos},
    doi = {10.1109/TII.2020.3000491},
    issn = {1551-3203},
    journal = {IEEE Transactions on Industrial Informatics},
    pages = {1--1},
    title = {{Fast mesh denoising with data driven normal filtering using deep variational autoencoders}},
    url = {https://ieeexplore.ieee.org/document/9110709/},
    year = {2020}
    }
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023