Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Related tags

Deep LearningPTSNet
Overview

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yongchao Gong, Chang Huang, Wenyu Liu, Xinggang Wang.(* means equal contribution)

This code is the implementation mainly for DAVIS 2017 dataset. For more detail, please refer to our paper.

Architecture


Overview of our proposed PTSNet for video object segmentation. OPN is designed for generating proposals of the interested objects and OTN aims to distinguish which one of the proposals is the best. Finally, DRSN does the final pixel level tracking(segmentation) task. Note in our implementation we couple OPN and OTN as a whole network, and spearate DRSN out under engineering consideration.

Usage

Preparation

  1. Install PyTorch 1.0 and necessary libraries like opencv, PIL etc.

  2. There are some native CUDA implementations, InPlace-ABN and MaskRCNN Operators, which must be compiled at the very start.

    # Before you compile, you need to figure out several things:
    # - The CUDA kernels supported by your GPU, here we use `sm_52`, `sm_61` and `sm_70` for NVIDIA Titan V.
    # - `cuda` and `nvcc` paths in your operating system, which exist usually in `/usr/local/cuda` and `/usr/local/cuda/bin/nvcc` respectively.
    # InPlace-ABN_0.4   (PyTorch 0.4)
    cd model/inplace_ABN_0.4
    bash build.sh
    # OR you could choose the 1.0 version of inplace ABN.
    # InPlace-ABN_1.0   (PyTorch 1.0)
    cd model/inplace_ABN    # It is dynamically compiled when running (gcc > 4.9)
    
    # MaskRCNN Operators (PyTorch 0.4)
    cd coupled_otn_opn/tracking/maskrcnn/lib
    bash make.sh
  3. You can train PTSNet from scratch or just evaluate our pretrained model.

    • Train it from scratch, you need to download:

       # DRSN: wget "https://download.pytorch.org/models/resnet50-19c8e357.pth" -O drsn/init_models/resnet50-19c8e357.pth
       # OPN: wget "https://drive.google.com/open?id=1ma1fNmEvS9dJLOIcm1FRzYofVS_t3aI3" -O coupled_otn_opn/tracking/maskrcnn/data/X-152-32x8d-IN5k.pkl
       # If you want to use our pretrained OTN:
       #   wget https://drive.google.com/open?id=12bF1dRlEUZoQz3Qcr2WD3ojqNHzbCrjf, put it into `coupled_otn_opn/models/mdnet_davis_50cyche.pth`
       # Else please modify from py-MDNet(https://github.com/HyeonseobNam/py-MDNet) to train OTN on DAVIS by yourself.
    • If you want to use our pretrained model to do the evaluation, you need to download:

       # DRSN: https://drive.google.com/open?id=116yXnqX43BZ7kEgdzUhIeTSn1dbvcE2F, put it into `drsn/snapshots/drsn_yvos_10w_davis_3p5w.pth`
       # OPN: wget "https://drive.google.com/open?id=1ma1fNmEvS9dJLOIcm1FRzYofVS_t3aI3" -O coupled_otn_opn/tracking/maskrcnn/data/X-152-32x8d-IN5k.pkl
       # OTN: https://drive.google.com/open?id=12bF1dRlEUZoQz3Qcr2WD3ojqNHzbCrjf, put it into `coupled_otn_opn/models/mdnet_davis_50cycle.pth`
  4. Dataset

    • YouTube-VOS: Download from YouTube-VOS, note we only need the training part(train_all_frames.zip), totally about 41G. Unzip, move and rename it to drsn/dataset/yvos.
    • DAVIS: Download from DAVIS, note we only need the 480p version(DAVIS-2017-trainval-480p.zip). Unzip, move and rename it to drsn/dataset/DAVIS/trainval and coupled_otn_opn/DAVIS/trainval. Here you need to make a subdirectory of trainval directory to store the dataset.

    And make sure to put the files as the following structure:

    .
    ├── drsn
    │   ├── dataset
    │   │   ├── DAVIS
    │   │   │   └── trainval
    │   │   │       ├── Annotations
    │   │   │       ├── ImageSets
    │   │   │       └── JPEGImages
    │   │   └── yvos
    │   │       └── train_all_frames
    │   ├── init_model
    │   │   └── resnet50-19c8e357.pth
    │   └── snapshots
    │       └── drsn_yvos_10w_davis_3p5w.pth
    └── coupled_otn_opn
        ├── DAVIS
        │   └── trainval
        ├── models
        │   └── mdnet_davis_50cycle.pth
        └── tracking
            └── maskrcnn
                └── data
                    └── X-152-32x8d-FPN-IN5k.pkl
    

Train and Evaluate

  • Firstly, check the directory of coupled_otn_opn and follow the README.md inside to generate our proposals. You can also skip this step for we have provided generated proposals in drsn/dataset/result_davis directory.
  • Secondly, enter drsn and check do_train_eval.sh to train and evaluate.
  • Finally, we also provide result masks by our PTSNet in result-masks-GoogleDrive. The quantitative results are measured by DAVIS official matlab toolbox.
J Mean F Mean G Mean
Avg 71.6 77.7 74.7

Acknowledgment

The work was mainly done during an internship at Horizon Robotics.

Citing PTSNet

If you find PTSNet useful in your research, please consider citing:

@article{ptsnet2019,
        title={Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation},
        author={Zhou, Qiang and Huang, Zilong and Huang, Lichao and Han, Shen and Gong, Yongchao and Huang, Chang and Liu, Wenyu and Wang, Xinggang},
        journal = {arXiv preprint arXiv:1907.01203v2},
        year={2019}
        }

Thanks to the Third Party Libs

Owner
Forest
If a bullet's going to get you, it has already been fired.
Forest
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022