Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

Overview

DiagonalGAN

Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Translation" (ICCV 2021)

Arxiv : link CVF : link

Contact

If you have any question,

e-mail : [email protected]

Abstract

One of the important research topics in image generative models is to disentangle the spatial contents and styles for their separate control. Although StyleGAN can generate content feature vectors from random noises, the resulting spatial content control is primarily intended for minor spatial variations, and the disentanglement of global content and styles is by no means complete. Inspired by a mathematical understanding of normalization and attention, here we present a novel hierarchical adaptive Diagonal spatial ATtention (DAT) layers to separately manipulate the spatial contents from styles in a hierarchical manner. Using DAT and AdaIN, our method enables coarse-to-fine level disentanglement of spatial contents and styles. In addition, our generator can be easily integrated into the GAN inversion framework so that the content and style of translated images from multi-domain image translation tasks can be flexibly controlled. By using various datasets, we confirm that the proposed method not only outperforms the existing models in disentanglement scores, but also provides more flexible control over spatial features in the generated images.

Models9

Environment Settings

Python 3.6.7 +

Pytorch 1.5.0 +

Dataset

For faster training, we recommend .jpg file format.

Download Link: CelebA-HQ / AFHQ

Unzip the files and put the folder into the data directory (./data/Celeb/data1024 , ./data/afhq)

To process the data for multidomain Diagonal GAN, run

./data/Celeb/Celeb_proc.py 

After download the CelebA-HQ dataset to save males / females images in different folders.

We randomly selected 1000 images as validation set for each domain (1000 males / 1000 females).

Save validation files into ./data/Celeb/val/males , ./data/Celeb/val/females

Train

Train Basic Diagonal GAN

For full-resolution CelebA-HQ training,

python train.py --datapath ./data/Celeb/data1024 --sched --max_size 1024 --loss r1

For full-resolution AFHQ training,

python train.py --datapath ./data/afhq --sched --max_size 512 --loss r1

Train Multidomain Diagonal GAN

For training multidomain (Males/ Females) models, run

python train_multidomain.py --datapath ./data/Celeb/mult --sched --max_size 256

Train IDInvert Encoders on pre-trained Multidomain Diagonal GAN

For training IDInvert on pre-trained model,

python train_idinvert.py --ckpt $MODEL_PATH$ 

or you can download the pre-trained Multidomain model.

Save the model in ./checkpoint/train_mult/CelebAHQ_mult.model

and set $MODEL_PATH$ as above.

Additional latent code optimization ( for inference )

To further optimize the latent codes,

python train_idinvert_opt.py --ckpt $MODEL_PATH$ --enc_ckpt $ENC_MODEL_PATH$

MODEL_PATH is pre-trained multidomain model directory, and

ENC_MODEL_PATH is IDInvert encoder model directory.

You can download the pre-trained IDInvert encoder models.

We also provide optimized latent codes.

Pre-trained model Download

Pre-trained Diagonal GAN on 1024x1024 CelebA-HQ : Link save to ./checkpoint/train_basic

Pre-trained Diagonal GAN on 512x512 AFHQ : Link save to ./checkpoint/train_basic

Pre-trained Multidomain Diagonal GAN on 256x256 CelebA-HQ : Link save to ./checkpoint/train_mult

Pre-trained IDInvert Encoders on 256x256 CelebA-HQ : Link save to ./checkpoint/train_idinvert

Optimized latent codes : Link save to ./codes

Generate Images

To generate the images from the pre-trained model,

python generate.py --mode $MODE$ --domain $DOM$ --target_layer $TARGET$

for $MODE$, there is three choices (sample , mixing, interpolation).

using 'sample' just sample random samples,

for 'mixing', generate images with random code on target layer $TARGET$

for 'interpolate', generate with random interpolation on target layer $TARGET$

also, we can choose style or content with setting $DOM$ with 'style' or 'content'

Generate Images on Inverted model

To generate the images from the pre-trained IDInvert,

python generate_idinvert.py --mode $MODE$ --domain $DOM$ --target_layer $TARGET$

for $MODE$, there is three choices (sample , mixing, encode).

using 'sample' just sample random samples,

for 'mixing', generate images with random code on target layer $TARGET$

for 'encode', generate auto-encoder reconstructions

we can choose style or content with setting $DOM$ with 'style' or 'content'

To use additional optimized latent codes, activate --use_code

Examples

python generate.py --mode sample 

03_content_sample

8x8 resolution content

python generate.py --mode mixing --domain content --target_layer 2 3

03_content_mixing

High resolution style

python generate.py --mode mixing --domain style --target_layer 14 15 16 17

02_style_mixing

Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022