Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

Overview

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visibility graph along with the navigation. The planner is capable of handling both known and unknown environments. In a known environment, paths are planned based on a prior map. In an unknown environment, multiple paths are attempted to guide the vehicle to goal based on the environment observed during the navigation. When dynamic obstacles are present, FAR Planner disconnects visibility edges blocked by the dynamic obstacles and reconnects them after regaining visibility. The software implementation uses two CPU threads - one for dynamically updating the visibility graph using ~20% of the thread and the other for path search that can find a path within 3ms, as evaluated on an i7 computer.

FAR Planner was used by the CMU-OSU Team in attending DARPA Subterranean Challenge. In the final competition which took place in Louisville Mega Cavern, KY, the team's robots conducted the most complete traversing and mapping across the site (26 out of 28 sectors) among all teams, winning a "Most Sectors Explored Award".

A video showing functionalities of FAR Planner is available.

Method

Usage

The repository has been tested in Ubuntu 18.04 with ROS Melodic and Ubuntu 20.04 with ROS Noetic. Follow instructions in Autonomous Exploration Development Environment to setup the development environment. Make sure to checkout the branch that matches the computer setup, compile, and download the simulation environments.

To setup FAR Planner, clone the repository.

git clone https://github.com/MichaelFYang/far_planner

In a terminal, go to the folder and compile.

cd far_planner
catkin_make

To run the code, go to the development environment folder in a terminal, source the ROS workspace, and launch.

source devel/setup.sh
roslaunch vehicle_simulator system_indoor.launch

In another terminal, go to the FAR Planner folder, source the ROS workspace, and launch.

source devel/setup.sh
roslaunch far_planner far_planner.launch

Now, users can send a goal by pressing the 'Goalpoint' button in RVIZ and then clicking a point to set the goal. The vehicle will navigate to the goal and build a visibility graph (in cyan) along the way. Areas covered by the visibility graph become free space. When navigating in free space, the planner uses the built visibility graph, and when navigating in unknown space, the planner attempts to discover a way to the goal. By pressing the 'Reset Visibility Graph' button, the planner will reinitialize the visibility graph. By unchecking the 'Planning Attemptable' checkbox, the planner will first try to find a path through the free space. The path will show in green. If such a path does not exist, the planner will consider unknown space together. The path will show in blue. By unchecking the 'Update Visibility Graph' checkbox, the planner will stop updating the visibility graph. To read/save the visibility graph from/to a file, press the 'Read'/'Save' button. An example visibility graph file for indoor environment is available at 'src/far_planner/data/indoor.vgh'.

Indoor

Anytime during the navigation, users can use the control panel to navigate the vehicle by clicking the in the black box. The system will switch to smart joystick mode - the vehicle tries to follow the virtual joystick command and avoid collisions at the same time. To resume FAR planner navigation, press the 'Resume Navigation to Goal' button or use the 'Goalpoint' button to set a new goal. Note that users can use a PS3/4 or Xbox controller instead of the virtual joystick. For more information, please refer to our development environment page.

ControlPanel     PS3 Controller

To launch with a different environment, use the command lines below and replace '<environment>' with one of the environment names in the development environment, i.e. 'campus', 'indoor', 'garage', 'tunnel', and 'forest'.

roslaunch vehicle_simulator system_<environment>.launch
roslaunch far_planner far_planner.launch

To run FAR Planner in a Matterport3D environment, follow instructions on the development environment page to setup the Matterport3D environment. Then, use the command lines below to launch the system and FAR Planner.

roslaunch vehicle_simulator system_matterport.launch
roslaunch far_planner far_planner.launch config:=matterport

Matterport

Configuration

FAR planner settings are kept in default.yaml in the 'src/far_planner/config' folder. For Matterport3D environments, the settings are in matterport.yaml in the same folder.

  • is_static_env (default: true) - set to false if the environment contains dynamic obstacles.

Todo

  • The current implementation does not support multi-floor environments. The environment can be 3D but needs to be single floored. An upgrade is planned for multi-floor environment support.

Reference

  • F. Yang, C. Cao, H. Zhu, J. Oh, and J. Zhang. FAR Planner: Fast, Attemptable Route Planner using Dynamic Visibility Update. Submitted in 2021.

Author

Fan Yang ([email protected])

Credit

Eigen: a lightweight C++ template library for linear algebra.

Owner
Fan Yang
Fan Yang
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022