Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

Overview

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visibility graph along with the navigation. The planner is capable of handling both known and unknown environments. In a known environment, paths are planned based on a prior map. In an unknown environment, multiple paths are attempted to guide the vehicle to goal based on the environment observed during the navigation. When dynamic obstacles are present, FAR Planner disconnects visibility edges blocked by the dynamic obstacles and reconnects them after regaining visibility. The software implementation uses two CPU threads - one for dynamically updating the visibility graph using ~20% of the thread and the other for path search that can find a path within 3ms, as evaluated on an i7 computer.

FAR Planner was used by the CMU-OSU Team in attending DARPA Subterranean Challenge. In the final competition which took place in Louisville Mega Cavern, KY, the team's robots conducted the most complete traversing and mapping across the site (26 out of 28 sectors) among all teams, winning a "Most Sectors Explored Award".

A video showing functionalities of FAR Planner is available.

Method

Usage

The repository has been tested in Ubuntu 18.04 with ROS Melodic and Ubuntu 20.04 with ROS Noetic. Follow instructions in Autonomous Exploration Development Environment to setup the development environment. Make sure to checkout the branch that matches the computer setup, compile, and download the simulation environments.

To setup FAR Planner, clone the repository.

git clone https://github.com/MichaelFYang/far_planner

In a terminal, go to the folder and compile.

cd far_planner
catkin_make

To run the code, go to the development environment folder in a terminal, source the ROS workspace, and launch.

source devel/setup.sh
roslaunch vehicle_simulator system_indoor.launch

In another terminal, go to the FAR Planner folder, source the ROS workspace, and launch.

source devel/setup.sh
roslaunch far_planner far_planner.launch

Now, users can send a goal by pressing the 'Goalpoint' button in RVIZ and then clicking a point to set the goal. The vehicle will navigate to the goal and build a visibility graph (in cyan) along the way. Areas covered by the visibility graph become free space. When navigating in free space, the planner uses the built visibility graph, and when navigating in unknown space, the planner attempts to discover a way to the goal. By pressing the 'Reset Visibility Graph' button, the planner will reinitialize the visibility graph. By unchecking the 'Planning Attemptable' checkbox, the planner will first try to find a path through the free space. The path will show in green. If such a path does not exist, the planner will consider unknown space together. The path will show in blue. By unchecking the 'Update Visibility Graph' checkbox, the planner will stop updating the visibility graph. To read/save the visibility graph from/to a file, press the 'Read'/'Save' button. An example visibility graph file for indoor environment is available at 'src/far_planner/data/indoor.vgh'.

Indoor

Anytime during the navigation, users can use the control panel to navigate the vehicle by clicking the in the black box. The system will switch to smart joystick mode - the vehicle tries to follow the virtual joystick command and avoid collisions at the same time. To resume FAR planner navigation, press the 'Resume Navigation to Goal' button or use the 'Goalpoint' button to set a new goal. Note that users can use a PS3/4 or Xbox controller instead of the virtual joystick. For more information, please refer to our development environment page.

ControlPanel     PS3 Controller

To launch with a different environment, use the command lines below and replace '<environment>' with one of the environment names in the development environment, i.e. 'campus', 'indoor', 'garage', 'tunnel', and 'forest'.

roslaunch vehicle_simulator system_<environment>.launch
roslaunch far_planner far_planner.launch

To run FAR Planner in a Matterport3D environment, follow instructions on the development environment page to setup the Matterport3D environment. Then, use the command lines below to launch the system and FAR Planner.

roslaunch vehicle_simulator system_matterport.launch
roslaunch far_planner far_planner.launch config:=matterport

Matterport

Configuration

FAR planner settings are kept in default.yaml in the 'src/far_planner/config' folder. For Matterport3D environments, the settings are in matterport.yaml in the same folder.

  • is_static_env (default: true) - set to false if the environment contains dynamic obstacles.

Todo

  • The current implementation does not support multi-floor environments. The environment can be 3D but needs to be single floored. An upgrade is planned for multi-floor environment support.

Reference

  • F. Yang, C. Cao, H. Zhu, J. Oh, and J. Zhang. FAR Planner: Fast, Attemptable Route Planner using Dynamic Visibility Update. Submitted in 2021.

Author

Fan Yang ([email protected])

Credit

Eigen: a lightweight C++ template library for linear algebra.

Owner
Fan Yang
Fan Yang
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
113 Nov 28, 2022
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

Computational Pathology 12 Aug 06, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023