PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Related tags

Deep LearningDeFRCN
Overview

Introduction

This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Updates!!

  • 【2021/10/10】 We release the official PyTorch implementation of DeFRCN.
  • 【2021/08/20】 We have uploaded our paper (long version with supplementary material) on arxiv, review it for more details.

Quick Start

1. Check Requirements

  • Linux with Python >= 3.6
  • PyTorch >= 1.6 & torchvision that matches the PyTorch version.
  • CUDA 10.1, 10.2
  • GCC >= 4.9

2. Build DeFRCN

  • Clone Code
    git clone https://github.com/er-muyue/DeFRCN.git
    cd DeFRCN
    
  • Create a virtual environment (optional)
    virtualenv defrcn
    cd /path/to/venv/defrcn
    source ./bin/activate
    
  • Install PyTorch 1.6.0 with CUDA 10.1
    pip3 install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
  • Install Detectron2
    python3 -m pip install detectron2==0.3 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.6/index.html
    
    • If you use other version of PyTorch/CUDA, check the latest version of Detectron2 in this page: Detectron2.
    • Sorry for that I don’t have enough time to test on more versions, if you run into problems with other versions, please let me know.
  • Install other requirements.
    python3 -m pip install -r requirements.txt
    

3. Prepare Data and Weights

  • Data Preparation
    • We evaluate our models on two datasets for both FSOD and G-FSOD settings:

      Dataset Size GoogleDrive BaiduYun Note
      VOC2007 0.8G download download -
      VOC2012 3.5G download download -
      vocsplit <1M download download refer from TFA
      COCO ~19G - - download from offical
      cocosplit 174M download download refer from TFA
    • Unzip the downloaded data-source to datasets and put it into your project directory:

        ...
        datasets
          | -- coco (trainval2014/*.jpg, val2014/*.jpg, annotations/*.json)
          | -- cocosplit
          | -- VOC2007
          | -- VOC2012
          | -- vocsplit
        defrcn
        tools
        ...
      
  • Weights Preparation
    • We use the imagenet pretrain weights to initialize our model. Download the same models from here: GoogleDrive BaiduYun
    • The extract code for all BaiduYun link is 0000

4. Training and Evaluation

For ease of training and evaluation over multiple runs, we integrate the whole pipeline of few-shot object detection into one script run_*.sh, including base pre-training and novel-finetuning (both FSOD and G-FSOD).

  • To reproduce the results on VOC, EXP_NAME can be any string (e.g defrcn, or something) and SPLIT_ID must be 1 or 2 or 3 (we consider 3 random splits like other papers).
    bash run_voc.sh EXP_NAME SPLIT_ID (1, 2 or 3)
    
  • To reproduce the results on COCO, EXP_NAME can be any string (e.g defrcn, or something)
    bash run_coco.sh EXP_NAME
    
  • Please read the details of few-shot object detection pipeline in run_*.sh, you need change IMAGENET_PRETRAIN* to your path.

Results on COCO Benchmark

  • Few-shot Object Detection

    Method mAPnovel
    Shot 1 2 3 5 10 30
    FRCN-ft 1.0* 1.8* 2.8* 4.0* 6.5 11.1
    FSRW - - - - 5.6 9.1
    MetaDet - - - - 7.1 11.3
    MetaR-CNN - - - - 8.7 12.4
    TFA 4.4* 5.4* 6.0* 7.7* 10.0 13.7
    MPSR 5.1* 6.7* 7.4* 8.7* 9.8 14.1
    FSDetView 4.5 6.6 7.2 10.7 12.5 14.7
    DeFRCN (Our Paper) 9.3 12.9 14.8 16.1 18.5 22.6
    DeFRCN (This Repo) 9.7 13.1 14.5 15.6 18.4 22.6
  • Generalized Few-shot Object Detection

    Method mAPnovel
    Shot 1 2 3 5 10 30
    FRCN-ft 1.7 3.1 3.7 4.6 5.5 7.4
    TFA 1.9 3.9 5.1 7 9.1 12.1
    FSDetView 3.2 4.9 6.7 8.1 10.7 15.9
    DeFRCN (Our Paper) 4.8 8.5 10.7 13.6 16.8 21.2
    DeFRCN (This Repo) 4.8 8.5 10.7 13.5 16.7 21.0
  • * indicates that the results are reproduced by us with their source code.
  • It's normal to observe -0.3~+0.3AP noise between your results and this repo.
  • The results of mAPbase and mAPall for G-FSOD are list here GoogleDrive, BaiduYun.
  • If you have any problem of above results in this repo, you can download configs and train logs from GoogleDrive, BaiduYun.

Results on VOC Benchmark

  • Few-shot Object Detection

    Method Split-1 Split-2 Split-3
    Shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
    YOLO-ft 6.6 10.7 12.5 24.8 38.6 12.5 4.2 11.6 16.1 33.9 13.0 15.9 15.0 32.2 38.4
    FRCN-ft 13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1
    FSRW 14.8 15.5 26.7 33.9 47.2 15.7 15.2 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
    MetaDet 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
    MetaR-CNN 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
    TFA 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
    MPSR 41.7 - 51.4 55.2 61.8 24.4 - 39.2 39.9 47.8 35.6 - 42.3 48.0 49.7
    DeFRCN (Our Paper) 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4
    DeFRCN (This Repo) 55.1 57.4 61.1 64.6 61.5 32.1 40.5 47.9 52.9 47.5 48.9 51.9 52.3 55.7 59.0
  • Generalized Few-shot Object Detection

    Method Split-1 Split-2 Split-3
    Shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
    FRCN-ft 9.9 15.6 21.6 28.0 52.0 9.4 13.8 17.4 21.9 39.7 8.1 13.9 19 23.9 44.6
    FSRW 14.2 23.6 29.8 36.5 35.6 12.3 19.6 25.1 31.4 29.8 12.5 21.3 26.8 33.8 31.0
    TFA 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6
    FSDetView 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6
    DeFRCN (Our Paper) 40.2 53.6 58.2 63.6 66.5 29.5 39.7 43.4 48.1 52.8 35.0 38.3 52.9 57.7 60.8
    DeFRCN (This Repo) 43.8 57.5 61.4 65.3 67.0 31.5 40.9 45.6 50.1 52.9 38.2 50.9 54.1 59.2 61.9
  • Note that we change the λGDL-RCNN for VOC to 0.001 (0.01 in paper) and get better performance, check the configs for more details.

  • The results of mAPbase and mAPall for G-FSOD are list here GoogleDrive, BaiduYun.

  • If you have any problem of above results in this repo, you can download configs and logs from GoogleDrive, BaiduYun.

Acknowledgement

This repo is developed based on TFA and Detectron2. Please check them for more details and features.

Citing

If you use this work in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@inproceedings{qiao2021defrcn,
  title={DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection},
  author={Qiao, Limeng and Zhao, Yuxuan and Li, Zhiyuan and Qiu, Xi and Wu, Jianan and Zhang, Chi},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={8681--8690},
  year={2021}
}
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022