LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

Overview

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

python-image pytorch-image

Table of Contents:

Introduction

This project contains the code (Note: The code is test in the environment with python=3.6, cuda=9.0, PyTorch-0.4.1, also support Pytorch-0.4.1+) for: LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation by Yu Wang.

The extensive computational burden limits the usage of CNNs in mobile devices for dense estimation tasks, a.k.a semantic segmentation. In this paper, we present a lightweight network to address this problem, namely **LEDNet**, which employs an asymmetric encoder-decoder architecture for the task of real-time semantic segmentation.More specifically, the encoder adopts a ResNet as backbone network, where two new operations, channel split and shuffle, are utilized in each residual block to greatly reduce computation cost while maintaining higher segmentation accuracy. On the other hand, an attention pyramid network (APN) is employed in the decoder to further lighten the entire network complexity. Our model has less than 1M parameters, and is able to run at over 71 FPS on a single GTX 1080Ti GPU card. The comprehensive experiments demonstrate that our approach achieves state-of-the-art results in terms of speed and accuracy trade-off on Cityscapes dataset. and becomes an effective method for real-time semantic segmentation tasks.

Project-Structure

├── datasets  # contains all datasets for the project
|  └── cityscapes #  cityscapes dataset
|  |  └── gtCoarse #  Coarse cityscapes annotation
|  |  └── gtFine #  Fine cityscapes annotation
|  |  └── leftImg8bit #  cityscapes training image
|  └── cityscapesscripts #  cityscapes dataset label convert scripts!
├── utils
|  └── dataset.py # dataloader for cityscapes dataset
|  └── iouEval.py # for test 'iou mean' and 'iou per class'
|  └── transform.py # data preprocessing
|  └── visualize.py # Visualize with visdom 
|  └── loss.py # loss function 
├── checkpoint
|  └── xxx.pth # pretrained models encoder form ImageNet
├── save
|  └── xxx.pth # trained models form scratch 
├── imagenet-pretrain
|  └── lednet_imagenet.py # 
|  └── main.py # 
├── train
|  └── lednet.py  # model definition for semantic segmentation
|  └── main.py # train model scripts
├── test
|  |  └── dataset.py 
|  |  └── lednet.py # model definition
|  |  └── lednet_no_bn.py # Remove the BN layer in model definition
|  |  └── eval_cityscapes_color.py # Test the results to generate RGB images
|  |  └── eval_cityscapes_server.py # generate result uploaded official server
|  |  └── eval_forward_time.py # Test model inference time
|  |  └── eval_iou.py 
|  |  └── iouEval.py 
|  |  └── transform.py 

Installation

  • Python 3.6.x. Recommended using Anaconda3
  • Set up python environment
pip3 install -r requirements.txt
  • Env: PyTorch_0.4.1; cuda_9.0; cudnn_7.1; python_3.6,

  • Clone this repository.

git clone https://github.com/xiaoyufenfei/LEDNet.git
cd LEDNet-master

Datasets

├── leftImg8bit
│   ├── train
│   ├──  val
│   └── test
├── gtFine
│   ├── train
│   ├──  val
│   └── test
├── gtCoarse
│   ├── train
│   ├── train_extra
│   └── val

Training-LEDNet

  • For help on the optional arguments you can run: python main.py -h

  • By default, we assume you have downloaded the cityscapes dataset in the ./data/cityscapes dir.

  • To train LEDNet using the train/main.py script the parameters listed in main.py as a flag or manually change them.

python main.py --savedir logs --model lednet --datadir path/root_directory/  --num-epochs xx --batch-size xx ...

Resuming-training-if-decoder-part-broken

  • for help on the optional arguments you can run: python main.py -h
python main.py --savedir logs --name lednet --datadir path/root_directory/  --num-epochs xx --batch-size xx --decoder --state "../save/logs/model_best_enc.pth.tar"...

Testing

  • the trained models of training process can be found at here. This may not be the best one, you can train one from scratch by yourself or Fine-tuning the training decoder with model encoder pre-trained on ImageNet, For instance
more details refer ./test/README.md

Results

  • Please refer to our article for more details.
Method Dataset Fine Coarse IoU_cla IoU_cat FPS
LEDNet cityscapes yes yes 70.6​% 87.1​%​ 70​+​

qualitative segmentation result examples:

Citation

If you find this code useful for your research, please use the following BibTeX entry.

 @article{wang2019lednet,
  title={LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation},
  author={Wang, Yu and Zhou, Quan and Liu, Jia and Xiong,Jian and Gao, Guangwei and Wu, Xiaofu, and Latecki Jan Longin},
  journal={arXiv preprint arXiv:1905.02423},
  year={2019}
}

Tips

  • Limited by GPU resources, the project results need to be further improved...
  • It is recommended to pre-train Encoder on ImageNet and then Fine-turning Decoder part. The result will be better.

Reference

  1. Deep residual learning for image recognition
  2. Enet: A deep neural network architecture for real-time semantic segmentation
  3. Erfnet: Efficient residual factorized convnet for real-time semantic segmentation
  4. Shufflenet: An extremely efficient convolutional neural network for mobile devices
Owner
Yu Wang
I am a graduate student in CV, my research areas center around computer vision and deep learning.
Yu Wang
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023