Chinese license plate recognition

Overview

AgentCLPR

GitHub forks GitHub Repo stars Pypi Downloads GitHub release (latest by date including pre-releases) GitHub

简介

车牌识别效果

  • 支持多种车牌的检测和识别(其中单层车牌识别效果较好):

    • 单层车牌:

        [[[[373, 282], [69, 284], [73, 188], [377, 185]], ['苏E05EV8', 0.9923506379127502]]]
        [[[[393, 278], [318, 279], [318, 257], [393, 255]], ['VA30093', 0.7386096119880676]]]
        [[[[[487, 366], [359, 372], [361, 331], [488, 324]], ['皖K66666', 0.9409016370773315]]]]
        [[[[304, 500], [198, 498], [199, 467], [305, 468]], ['鲁QF02599', 0.995299220085144]]]
        [[[[309, 219], [162, 223], [160, 181], [306, 177]], ['使198476', 0.9938704371452332]]]
        [[[[957, 918], [772, 920], [771, 862], [956, 860]], ['陕A06725D', 0.9791222810745239]]]
      
    • 双层车牌:

        [[[[399, 298], [256, 301], [256, 232], [400, 230]], ['浙G66666', 0.8870148431461757]]]
        [[[[398, 308], [228, 305], [227, 227], [398, 230]], ['陕A00087', 0.9578166644088313]]]
        [[[[352, 234], [190, 244], [190, 171], [352, 161]], ['宁A66666', 0.9958433652812175]]]
      

快速使用

  • 快速安装

    # 安装 AgentCLPR
    $ pip install agentclpr
    
    # 根据设备平台安装合适版本的 ONNXRuntime
    
    # CPU 版本(推荐非 win10 系统,无 CUDA 支持的设备安装)
    $ pip install onnxruntime
    
    # GPU 版本(推荐有 CUDA 支持的设备安装)
    $ pip install onnxruntime-gpu
    
    # DirectML 版本(推荐 win10 系统的设备安装,可实现通用的显卡加速)
    $ pip install onnxruntime-directml
    
    # 更多版本的安装详情请参考 ONNXRuntime 官网
  • 简单调用:

    # 导入 CLPSystem 模块
    from agentclpr import CLPSystem
    
    # 初始化车牌识别模型
    clp = CLPSystem()
    
    # 使用模型对图像进行车牌识别
    results = clp('test.jpg')
  • 服务器部署:

    • 启动 AgentCLPR Server 服务

      $ agentclpr server
    • Python 调用

      import cv2
      import json
      import base64
      import requests
      
      # 图片 Base64 编码
      def cv2_to_base64(image):
          data = cv2.imencode('.jpg', image)[1]
          image_base64 = base64.b64encode(data.tobytes()).decode('UTF-8')
          return image_base64
      
      # 读取图片
      image = cv2.imread('test.jpg')
      image_base64 = cv2_to_base64(image)
      
      # 构建请求数据
      data = {
          'image': image_base64
      }
      
      # 发送请求
      url = "http://127.0.0.1:5000/ocr"
      r = requests.post(url=url, data=json.dumps(data))
      
      # 打印预测结果
      print(r.json())

Contact us

Email : [email protected]
QQ Group : 1005109853

You might also like...
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

Code for the paper
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

The world's simplest facial recognition api for Python and the command line
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

PyTorch implementation of
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

TDN: Temporal Difference Networks for Efficient Action Recognition
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Bottleneck Transformers for Visual Recognition
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

A PyTorch Toolbox for Face Recognition
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

AI grand challenge 2020 Repo (Speech Recognition Track)
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Owner
AgentMaker
Focus on deep learning tools
AgentMaker
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022