Tensorflow implementation of DeepLabv2

Overview

TF-deeplab

This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1.

Currently it supports both training and testing the ResNet 101 version by converting the caffemodel provided by Jay.

Note that the current version is not multi-scale, i.e. only uses the original resolution branch and discarding all layers of 0.5 and 0.75 resolution.

The caffemodel2npy.py is modified from here, and the deeplab_model.py is modified from here.

Example Usage

  • Download the prototxt and caffemodel provided by Jay
  • Convert caffemodel to npy file
python caffemodel2npy.py deploy.prototxt ../deeplab/ResNet101/init.caffemodel ./model/ResNet101_init.npy
python caffemodel2npy.py deploy.prototxt ../deeplab/ResNet101/train_iter_20000.caffemodel ./model/ResNet101_train.npy
python caffemodel2npy.py deploy.prototxt ../deeplab/ResNet101/train2_iter_20000.caffemodel ./model/ResNet101_train2.npy
  • Convert npy file to tfmodel
python npy2tfmodel.py 0 ./model/ResNet101_init.npy ./model/ResNet101_init.tfmodel
python npy2tfmodel.py 0 ./model/ResNet101_train.npy ./model/ResNet101_train.tfmodel
python npy2tfmodel.py 0 ./model/ResNet101_train2.npy ./model/ResNet101_train2.tfmodel
  • Test on a single image
python deeplab_main.py 0 single
  • Test on the PASCAL VOC2012 validation set (you will also want to look at the matlab folder and run EvalSegResults.m after you run the following command)
python deeplab_main.py 0 test
  • To train on the PASCAL VOC2012 train_aug, run
python deeplab_main.py 0 train

Performance

The converted DeepLab ResNet 101 model achieves mean IOU of 73.296% on the validation set of PASCAL VOC2012. Again, this is only with the original resolution branch, which is likely to be the reason for the performance gap (according to the paper this number should be around 75%).

TODO

  • Incorporating 0.5 and 0.75 resolution
Owner
Chenxi Liu
Ph.D. Student in Computer Science
Chenxi Liu
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022