Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

Overview

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data

arXiv License: MIT

Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl

| Project Page | Paper | Poster | Slides | Video |

1

This repository includes the official and maintained PyTorch implementation of the paper OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data.

Abstract

Convolutional neural networks (CNNs) are the current state-of-the-art meta-algorithm for volumetric segmentation of medical data, for example, to localize COVID-19 infected tissue on computer tomography scans or the detection of tumour volumes in magnetic resonance imaging. A key limitation of 3D CNNs on voxelised data is that the memory consumption grows cubically with the training data resolution. Occupancy networks (O-Nets) are an alternative for which the data is represented continuously in a function space and 3D shapes are learned as a continuous decision boundary. While O-Nets are significantly more memory efficient than 3D CNNs, they are limited to simple shapes, are relatively slow at inference, and have not yet been adapted for 3D semantic segmentation of medical data. Here, we propose Occupancy Networks for Semantic Segmentation (OSS-Nets) to accurately and memory-efficiently segment 3D medical data. We build upon the original O-Net with modifications for increased expressiveness leading to improved segmentation performance comparable to 3D CNNs, as well as modifications for faster inference. We leverage local observations to represent complex shapes and prior encoder predictions to expedite inference. We showcase OSS-Net's performance on 3D brain tumour and liver segmentation against a function space baseline (O-Net), a performance baseline (3D residual U-Net), and an efficiency baseline (2D residual U-Net). OSS-Net yields segmentation results similar to the performance baseline and superior to the function space and efficiency baselines. In terms of memory efficiency, OSS-Net consumes comparable amounts of memory as the function space baseline, somewhat more memory than the efficiency baseline and significantly less than the performance baseline. As such, OSS-Net enables memory-efficient and accurate 3D semantic segmentation that can scale to high resolutions.

If you find this research useful in your work, please cite our paper:

@inproceedings{Reich2021,
        title={{OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data}},
        author={Reich, Christoph and Prangemeier, Tim and Cetin, {\"O}zdemir and Koeppl, Heinz},
        booktitle={British Machine Vision Conference},
        year={2021},
        organization={British Machine Vision Association},
}

Dependencies

All required Python packages can be installed by:

pip install -r requirements.txt

To install the official implementation of the Padé Activation Unit [1] (taken from the official repository) run:

cd pade_activation_unit/cuda
python setup.py build install

The code is tested with PyTorch 1.8.1 and CUDA 11.1 on Linux with Python 3.8.5! Using other PyTorch and CUDA versions newer than PyTorch 1.7.0 and CUDA 10.1 should also be possible.

Data

The BraTS 2020 dataset can be downloaded here and the LiTS dataset can be downloaded here. Please note, that accounts are required to login and downlaod the data on both websites.

The used training and validation split of the BraTS 2020 dataset is available here.

For generating the border maps, necessary if border based sampling is utilized, please use the generate_borders_bra_ts_2020.py and generate_borders_lits.py script.

Trained Models

Table 1. Segmentation results of trained networks. Weights are generally available here and specific models are linked below.

Model Dice () BraTS 2020 IoU () BraTS 2020 Dice () LiTS IoU () LiTS
O-Net [2] 0.7016 0.5615 0.6506 0.4842 - -
OSS-Net A 0.8592 0.7644 0.7127 0.5579 weights BraTS weights LiTS
OSS-Net B 0.8541 0.7572 0.7585 0.6154 weights BraTS weights LiTS
OSS-Net C 0.8842 0.7991 0.7616 0.6201 weights BraTS weights LiTS
OSS-Net D 0.8774 0.7876 0.7566 0.6150 weights BraTS weights LiTS

Usage

Training

To reproduce the results presented in Table 1, we provide multiple sh scripts, which can be found in the scripts folder. Please change the dataset path and CUDA devices according to your system.

To perform training runs with different settings use the command line arguments of the train_oss_net.py file. The train_oss_net.py takes the following command line arguments:

Argument Default value Info
--train False Binary flag. If set training will be performed.
--test False Binary flag. If set testing will be performed.
--cuda_devices "0, 1" String of cuda device indexes to be used. Indexes must be separated by a comma.
--cpu False Binary flag. If set all operations are performed on the CPU. (not recommended)
--epochs 50 Number of epochs to perform while training.
--batch_size 8 Number of epochs to perform while training.
--training_samples 2 ** 14 Number of coordinates to be samples during training.
--load_model "" Path to model to be loaded.
--segmentation_loss_factor 0.1 Auxiliary segmentation loss factor to be utilized.
--network_config "" Type of network configuration to be utilized (see).
--dataset "BraTS" Dataset to be utilized. ("BraTS" or "LITS")
--dataset_path "BraTS2020" Path to dataset.
--uniform_sampling False Binary flag. If set locations are sampled uniformly during training.

Please note that the naming of the different OSS-Net variants differs in the code between the paper and Table 1.

Inference

To perform inference, use the inference_oss_net.py script. The script takes the following command line arguments:

Argument Default value Info
--cuda_devices "0, 1" String of cuda device indexes to be used. Indexes must be separated by a comma.
--cpu False Binary flag. If set all operations are performed on the CPU. (not recommended)
--load_model "" Path to model to be loaded.
--network_config "" Type of network configuration to be utilized (see).
--dataset "BraTS" Dataset to be utilized. ("BraTS" or "LITS")
--dataset_path "BraTS2020" Path to dataset.

During inference the predicted occupancy voxel grid, the mesh prediction, and the label as a mesh are saved. The meshes are saved as PyTorch (.pt) files and also as .obj files. The occupancy grid is only saved as a PyTorch file.

Acknowledgements

We thank Marius Memmel and Nicolas Wagner for the insightful discussions, Alexander Christ and Tim Kircher for giving feedback on the first draft, and Markus Baier as well as Bastian Alt for aid with the computational setup.

This work was supported by the Landesoffensive für wissenschaftliche Exzellenz as part of the LOEWE Schwerpunkt CompuGene. H.K. acknowledges support from the European Re- search Council (ERC) with the consolidator grant CONSYN (nr. 773196). O.C. is supported by the Alexander von Humboldt Foundation Philipp Schwartz Initiative.

References

[1] @inproceedings{Molina2020Padé,
        title={{Pad\'{e} Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks}},
        author={Alejandro Molina and Patrick Schramowski and Kristian Kersting},
        booktitle={International Conference on Learning Representations},
        year={2020}
}
[2] @inproceedings{Mescheder2019,
        title={{Occupancy Networks: Learning 3D Reconstruction in Function Space}},
        author={Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas},
        booktitle={CVPR},
        pages={4460--4470},
        year={2019}
}
Owner
Christoph Reich
Autonomous systems and electrical engineering student @ Technical University of Darmstadt
Christoph Reich
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data

Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO) Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Prior

165 Dec 19, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022