AI grand challenge 2020 Repo (Speech Recognition Track)

Overview

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지)

본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다.

본 개발자들이 참여한 2020 인공지능 그랜드 챌린지 4차 대회는 인공지능 기술을 활용하여 다양한 지역사회의 국민생활 및 사회현안을 대응하는 과제입니다. 그중 음성인지 트랙은 음성 클립에서 위협상황을 검출하고 해당 위협 상황을 구분하는 것이 목표로 하고 있습니다. 아래의 표는 본 대회에서 정의한 4가지의 폭력 Class이며 아래의 4가지 폭력 Class 외에 비폭력 Class가 추가되어 총 5개 Class의 폭력 또는 비폭력을 분류하는 것이 주된 목적입니다.

< 음성인지 분류대상 정의 >

추가적으로, 본 개발자들은 ETRI에서 작성된 사용협약서에 준수하여 pretrained 모델 및 정보에 관한 내용은 공개하지 않습니다. 해당 프로젝트를 쉽게 활용하기 위해서는 ETRI에서 제공하는 API를 활용하시면 되며, 다음 링크에서 서약서를 작성 후 키와 코드를 다운받으시면 되십니다. 본 프로젝트는 대회에서 적용한 여러 분류 모델들을 제공하며 앞서 다운로드한 ETRI에서 제공된 형태소 분석기와 토큰화를 사용하여 쉽게 실습할 수 있습니다.

분류 모델

Requirements

Python 3.7

Pytorch == 1.5.0

boto3

botocore

tqdm

requests

Models

본 프로젝트는 4가지의 분류 모델(MLP, CNN, LSTM, Bi-LSTM)을 활용하였습니다. 아래는 활용된 모델들의 전체적인 시나리오를 보여주는 개요도입니다.

1. MLP

< 활용된 MLP 모델 >

2. CNN

CNN은 해당 논문을 참고하였습니다. 더 자세한 내용은 논문에서 확인할 수 있습니다.

< 활용된 CNN 모델 >

3. LSTM

< 활용된 LSTM 모델 >

4. Bi-LSTM

< 활용된 Bi-LSTM 모델 >

Results

본 대회에서는 분류 결과를 Macro-F1 score에 의해 평가하였으며, Macro-F1 score는 아래와 같이 정의합니다. 이때, i는 각각의 폭력 및 비폭력 Class를 의미합니다.

< Macro-F1 Score >

위 식을 토대로, 저희의 분류 아래의 결과는 2020 인공지능 그랜드 챌린지 4차 대회 음성인지 트랙에서 본 팀에 대한 결과이며, 주최 측에서 테스트 데이터는 공개하지 않아 확인할 수 없습니다.

Model MLP [1] CNN [2] LSTM [3] Bi-LSTM [4]
Macro F1-Score 0.7029 0.615 0.7157 0.6935
Owner
Young-Seok Choi
Young-Seok Choi
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"

Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa

Matthew A Johnson 133 Dec 26, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023