A simple Tensorflow based library for deep and/or denoising AutoEncoder.

Overview

libsdae - deep-Autoencoder & denoising autoencoder

A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn style.

Prerequisities & Support

  • Tensorflow 1.0 is needed.
  • Supports both Python 2.7 and 3.4+ . Inform if it doesn't.

Installing

pip install git+https://github.com/rajarsheem/libsdae.git

Usage and small doc

test.ipynb has small example where both a tiny and a large dataset is used.

from deepautoencoder import StackedAutoEncoder
model = StackedAutoEncoder(dims=[5,6], activations=['relu', 'relu'], noise='gaussian', epoch=[10000,500],
                            loss='rmse', lr=0.007, batch_size=50, print_step=2000)
# usage 1 - encoding same data                           
result = model.fit_transform(x)
# usage 2 - fitting on one dataset and transforming (encoding) on another data
model.fit(x)
result = model.transform(np.random.rand(5, x.shape[1]))

Alt text

Important points:

  • If noise is not given, it becomes an autoencoder instead of denoising autoencoder.
  • dims refers to the dimenstions of hidden layers. (3 layers in this case)
  • noise = (optional)['gaussian', 'mask-0.4']. mask-0.4 means 40% of bits will be masked for each example.
  • x_ is the encoded feature representation of x.
  • loss = (optional) reconstruction error. rmse or softmax with cross entropy are allowed. default is rmse.
  • print_step is the no. of steps to skip between two loss prints.
  • activations can be 'sigmoid', 'softmax', 'tanh' and 'relu'.
  • batch_size is the size of batch in every epoch
  • Note that while running, global loss means the loss on the total dataset and not on a specific batch.
  • epoch is a list denoting the no. of iterations for each layer.

Citing

  • Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion by P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. Manzagol (Journal of Machine Learning Research 11 (2010) 3371-3408)

Contributing

You are free to contribute by starting a pull request. Some suggestions are:

  • Variational Autoencoders
  • Recurrent Autoencoders.
Owner
Rajarshee Mitra
I work at the intersection of NLU and Machine Learning. Currently, these are my primary areas of interest.
Rajarshee Mitra
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022