MAGMA - a GPT-style multimodal model that can understand any combination of images and language

Related tags

Deep Learningmagma
Overview

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning

Authors

repo (alphabetical)

Constantin (CoEich), Mayukh (Mayukhdeb), Sid (sdtblck)

paper

Constantin Eichenberg, Sidney Black, Samuel Weinbach, Aleph Alpha

Letitia Parcalabescu, Anette Frank, Heidelberg University

Abstract

Large-scale pretraining is fast becoming the norm in Vision-Language (VL) modeling. However, prevailing VL approaches are limited by the requirement for labeled data and the use of complex multi-step pretraining objectives. We present MAGMA - a simple method for augmenting generative language models with additional modalities using adapter-based finetuning. Building on Frozen, we train a series of VL models that autoregressively generate text from arbitrary combinations of visual and textual input. The pretraining is entirely end-to-end using a single language modeling objective, simplifying optimization compared to previous approaches. Importantly, the language model weights remain unchanged during training, allowing for transfer of encyclopedic knowledge and in-context learning abilities from language pretraining. MAGMA outperforms Frozen on open-ended generative tasks, achieving state of the art results on the OKVQA benchmark and competitive results on a range of other popular VL benchmarks, while pretraining on 0.2% of the number of samples used to train SimVLM.

Paper on arXiv: https://arxiv.org/abs/2112.05253

Examples (via Aleph Alpha playground)

Photos Text & Technical
A man covering a woman's eyes to hide a present A hand drawn treasure map
A fallen tree is blocking a road A software architecture

Model design

MAGMA model design

About the repository

In this repository we share the main parts of the codebase for training and inference of our MAGMA VL model. The main use of the repo is for downloading our pretrained weights and interacting with the model. We include a script for data parallel training with Deepspeed for finetuning our models or training a MAGMA model from scratch.

Installation

Make sure PyTorch (Ver >= 1.9.0) and Torchvision are installed. See https://pytorch.org/get-started/locally/.

You can pip install from the git repository with:

pip install git+https://github.com/Aleph-Alpha/magma.git

Make sure that you also download the config:

mkdir configs; wget -O configs/MAGMA_v1.yml https://raw.githubusercontent.com/Aleph-Alpha/magma/add-setup/configs/MAGMA_v1.yml

Or if you've cloned the repo, you can install all further requirements by:

pip install -r requirements.txt

Checkpoint

We also publish the model checkpoint that has been used for the publication. It is hosted on our infrastructure and downloads automatically. It can be downloaded manually here: https://bit.ly/aleph_alpha_magma_download

This checkpoint can also be played around with on a space managed by Heath Mitchell, AK, and Stella Biderman. (This is a 3rd party space, not managed by Aleph Alpha.)

Loading a model for inference

Downloads the checkpoint file into checkpoint_path if it's not already present.

from magma import Magma
from magma.image_input import ImageInput

model = Magma.from_checkpoint(
    config_path = "configs/MAGMA_v1.yml",
    checkpoint_path = "./mp_rank_00_model_states.pt",
    device = 'cuda:0'
)

inputs =[
    ## supports urls and path/to/image
    ImageInput('https://www.art-prints-on-demand.com/kunst/thomas_cole/woods_hi.jpg'),
    'Describe the painting:'
]

## returns a tensor of shape: (1, 149, 4096)
embeddings = model.preprocess_inputs(inputs)  

## returns a list of length embeddings.shape[0] (batch size)
output = model.generate(
    embeddings = embeddings,
    max_steps = 6,
    temperature = 0.7,
    top_k = 0,
)  

print(output[0]) ##  A cabin on a lake

Converting datasets to our format

To convert an image-caption dataset to our dataset class magma.datasets.ImgCptDataset, we suggest:

from magma.datasets.convert_datasets import convert_dataset

def my_dataset_iterator():
    """
    Implement an iterator for your dataset that for every datapoint yields a tuple
    image_path, {"captions": [...], "metadata": {...}, }, where image_path is the path to the image as a Path object, captions is a list of caption strings and metadata is an optional field.
    """

if __name__ == "__main__":
    convert_dataset(data_dir="/target/directory", ds_iterator=my_dataset_iterator())

How to train MAGMA

Run the training with:

deepspeed train.py --config path_to_my_config

To continue training from a deepspeed checkpoint, provide the checkpoint directory in the "load" config parameter.

WARNING: By default, instantiating magma via the init method instead of from_checkpoint loads the pretrained CLIP weights but not the pretrained gpt-j weights. For training MAGMA from scratch, download the gpt-j weights from this repo: https://github.com/finetuneanon/transformers and include them in the state dict after initializing the MAGMA model.

Owner
Aleph Alpha GmbH
Aleph Alpha GmbH
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022