Customizable RecSys Simulator for OpenAI Gym

Overview

gym-recsys: Customizable RecSys Simulator for OpenAI Gym

Installation | How to use | Examples | Citation

This package describes an OpenAI Gym interface for creating a simulation environment of reinforcement learning-based recommender systems (RL-RecSys). The design strives for simple and flexible APIs to support novel research.

Installation

gym-recsys can be installed from PyPI using pip:

pip install gym-recsys

Note that we support Python 3.7+ only.

You can also install it directly from this GitHub repository using pip:

pip install git+git://github.com/zuoxingdong/gym-recsys.git

How to use

To use gym-recsys, you need to define the following components:

user_ids

This describes a list of available user IDs for the simulation. Normally, a user ID is an integer.

An example of three users: user_ids = [0, 1, 2]

Note that the user ID will be taken as an input to user_state_model_callback to generate observations of the user state.

item_category

This describes the categories of a list of available items. The data type should be a list of strings. The indices of the list is assumed to correspond to item IDs.

An example of three items: item_category = ['sci-fi', 'romance', 'sci-fi']

The category information is mainly used for visualization via env.render().

item_popularity

This describe the popularity measure of a list of available items. The data type should be a list (or 1-dim array) of integers. The indices of the list is assumed to correspond to item IDs.

An example of three items: item_popularity = [5, 3, 1]

The popularity information is used for calculating Expected Popularity Complement (EPC) in the visualization.

hist_seq_len

This is an integer describing the number of most recently clicked items by the user to encode as the current state of the user.

An example of the historical sequence with length 3: hist_seq = [-1, 2, 0]. The item ID -1 indicates an empty event. In this case, the user clicked two items in the past, first item ID 2 followed by a second item ID 0.

The internal FIFO queue hist_seq will be taken as an input to both user_state_model_callback and reward_model_callback to generate observations of the user state.

slate_size

This is an integer describing the size of the slate (display list of recommended items).

It induces a combinatorial action space for the RL agent.

user_state_model_callback

This is a Python callback function taking user_id and hist_seq as inputs to generate an observation of current user state.

Note that it is generic. Either pre-defined heuristic computations or pre-trained neural network models using user/item embeddings can be wrapped as a callback function.

reward_model_callback

This is a Python callback function taking user_id, hist_seq and action as inputs to generate a reward value for each item in the slate. (i.e. action)

Note that it is generic. Either pre-defined heuristic computations or pre-trained neural network models using user/item embeddings can be wrapped as a callback function.

Examples

To illustrate the simple yet flexible design of gym-recsys, we provide a toy example to construct a simulation environment.

First, let us sample random embeddings for one user and five items:

user_features = np.random.randn(1, 10)
item_features = np.random.randn(5, 10)

Now let us define the category and popularity score for each item:

item_category = ['sci-fi', 'romance', 'sci-fi', 'action', 'sci-fi']
item_popularity = [5, 3, 1, 2, 3]

Then, we define callback functions for user state and reward values:

def user_state_model_callback(user_id, hist_seq):
    return user_features[user_id]

def reward_model_callback(user_id, hist_seq, action):
    return np.inner(user_features[user_id], item_features[action])

Finally, we are ready to create a simulation environment with OpenAI Gym API:

env_kws = dict(
    user_ids=[0],
    item_category=item_category,
    item_popularity=item_popularity,
    hist_seq_len=3,
    slate_size=2,
    user_state_model_callback=user_state_model_callback,
    reward_model_callback=reward_model_callback
)
env = gym.make('gym_recsys:RecSys-t50-v0', **env_kws)

Note that we created the environment with slate size of two items and historical interactions of the recent 3 steps. The horizon is 50 time steps.

Now let us play with this environment.

By evaluating a random agent with 100 times, we got the following performance:

Agent Episode Reward CTR
random 73.54 68.23%

Given the sampled embeddings, let's say item 1 and 3 lead to maximally possible reward values. Let us see how a greedy policy performs by constantly recommending item 1 and 3:

Agent Episode Reward CTR
greedy 180.86 97.93%

Last but not least, for the most fun part, let us generate animations of both policy for an episode via gym's Monitor wrapper, showing as GIFs in the following:

Random Agent

Greedy Agent

Citation

If you use gym-recsys in your work, please cite this repository:

@software{zuo2021recsys,
  author={Zuo, Xingdong},
  title={gym-recsys: Customizable RecSys Simulator for OpenAI Gym},
  url={https://github.com/zuoxingdong/gym-recsys},
  year={2021}
}
Owner
Xingdong Zuo
AI in well-being is my dream. Neural networks need to understand the world causally.
Xingdong Zuo
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"

corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord

Raschka Research Group 14 Dec 27, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021