RefineMask (CVPR 2021)

Overview

RefineMask: Towards High-Quality Instance Segmentation
with Fine-Grained Features (CVPR 2021)

This repo is the official implementation of RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features.

Framework

image

Main Results

Results on COCO

Method Backbone Schedule AP AP* Checkpoint
Mask R-CNN R50-FPN 1x 34.7 36.8
RefineMask R50-FPN 1x 37.3 40.6 download
Mask R-CNN R50-FPN 2x 35.4 37.7
RefineMask R50-FPN 2x 37.8 41.2 download
Mask R-CNN R101-FPN 1x 36.1 38.4
RefineMask R101-FPN 1x 38.6 41.8 download
Mask R-CNN R101-FPN 2x 36.6 39.3
RefineMask R101-FPN 2x 39.0 42.4 download

Note: No data augmentations except standard horizontal flipping were used.

Results on LVIS

Method Backbone Schedule AP APr APc APf Checkpoint
Mask R-CNN R50-FPN 1x 22.1 10.1 21.7 30.0
RefineMask R50-FPN 1x 25.7 13.8 24.9 31.8 download
Mask R-CNN R101-FPN 1x 23.7 12.3 23.2 29.1
RefineMask R101-FPN 1x 27.1 15.6 26.2 33.1 download

Results on Cityscapes

Method Backbone Schedule AP APS APM APL Checkpoint
Mask R-CNN R50-FPN 1x 33.8 12.0 31.5 51.8
RefineMask R50-FPN 1x 37.6 14.0 35.4 57.9 download

Efficiency of RefineMask

Method AP AP* FPS
Mask R-CNN 34.7 36.8 15.7
PointRend 35.6 38.7 11.4
HTC 37.4 40.7 4.4
RefineMask 37.3 40.9 11.4

Usage

Requirements

  • Python 3.6+
  • Pytorch 1.5.0
  • mmcv-full 1.0.5

Datasets

data
  ├── coco
  |   ├── annotations
  │   │   │   ├── instances_train2017.json
  │   │   │   ├── instances_val2017.json
  │   │   │   ├── lvis_v0.5_val_cocofied.json
  │   ├── train2017
  │   │   ├── 000000004134.png
  │   │   ├── 000000031817.png
  │   │   ├── ......
  │   ├── val2017
  │   ├── test2017
  ├── lvis
  |   ├── annotations
  │   │   │   ├── lvis_v1_train.json
  │   │   │   ├── lvis_v1_val.json
  │   ├── train2017
  │   │   ├── 000000004134.png
  │   │   ├── 000000031817.png
  │   │   ├── ......
  │   ├── val2017
  │   ├── test2017
  ├── cityscapes
  |   ├── annotations
  │   │   │   ├── instancesonly_filtered_gtFine_train.json
  │   │   │   ├── instancesonly_filtered_gtFine_val.json
  │   ├── leftImg8bit
  │   |   ├── train
  │   │   ├── val
  │   │   ├── test

Note: We used the lvis-v1.0 dataset which consists of 1203 categories.

Training

./scripts/dist_train.sh ./configs/refinemask/coco/r50-refinemask-1x.py 8

Note: The codes only support batch size 1 per GPU, and we trained all models with a total batch size 16x1. If you train models with a total batch size 8x1, the performance may drop. We will support batch size 2 or more per GPU later. You can use ./scripts/slurm_train.sh for training with multi-nodes.

Inference

./scripts/dist_test.sh ./configs/refinemask/coco/r50-refinemask-1x.py xxxx.pth 8

Citation

@article{zhang2021refinemask,
  title={RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features},
  author={Gang, Zhang and Xin, Lu and Jingru, Tan and Jianmin, Li and Zhaoxiang, Zhang and Quanquan, Li and Xiaolin, Hu},
  journal={arXiv preprint arXiv:2104.08569},
  year={2021}
}
Owner
Gang Zhang
Ph.D. student in Tsinghua University [email protected]
Gang Zhang
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

48 Dec 26, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021