Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

Overview

n-stage Latent Dirichlet Allocation (n-LDA)

Proposed n-LDA & A Novel Approach for classical LDA

Latent Dirichlet Allocation (LDA) is a generative probabilistic topic model for a given text collection. Topics have a probability distribution over words and text documents over topics. Each subject has a probability distribution over the fixed word corpus [1]. The method exemplifies a mix of these topics for each document. Then, a model is produced by sampling words from this mixture [2].

The coherence value, which is the topic modeling criterion, is used to determine the number of K topic in the system. The coherence value calculates the closeness of words to each other. The topic value of the highest one among the calculated consistency values is chosen as the topic number of the system [3].

After modeling the system with classical LDA, an LDA-based n-stage method is proposed to increase the success of the model. The value of n in the method may vary according to the size of the dataset. With the method, it is aimed to delete the words in the corpus that negatively affect the success. Thus, with the increase in the weight values of the words in the topics formed with the remaining words, the class labels of the topics can be determined more easily [4].

image

The steps of the method are shown in above Figure. In order to reduce the number of words in the dictionary, the threshold value for each topic is calculated. The threshold value is obtained by dividing the sum of the weights of all the words to the word count in the relevant topic. Words with a weight less than the specified threshold value are deleted from the topics and a new dictionary is created for the model. Finally, the system is re-modeled using the LDA algorithm with the new dictionary. These steps can be repeated n times [4].

This method was applied for Turkish and English language. n-stage LDA method was better than classic LDA according to related studies.

Related papers & articles for n-stage LDA

!!! Please citation first paper:

@inproceedings{guven2019comparison,
  title={Comparison of Topic Modeling Methods for Type Detection of Turkish News},
  author={G{\"u}ven, Zekeriya Anil and Diri, Banu and {\c{C}}akalo{\u{g}}lu, Tolgahan},
  booktitle={2019 4th International Conference on Computer Science and Engineering (UBMK)},
  pages={150--154},
  year={2019},
  organization={IEEE}
  doi={10.1109/UBMK.2019.8907050}
}

1-Guven, Z. A., Diri, B., & Cakaloglu, T. (2018, October). Classification of New Titles by Two Stage Latent Dirichlet Allocation. In 2018 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1-5). Ieee.

2-Guven, Z. A., Diri, B., & Cakaloglu, T. (2021). Evaluation of Non-Negative Matrix Factorization and n-stage Latent Dirichlet Allocation for Emotion Analysis in Turkish Tweets. arXiv preprint arXiv:2110.00418.

3-Güven, Z. A., Diri, B., & Çakaloğlu, T. (2020). Comparison of n-stage Latent Dirichlet Allocation versus other topic modeling methods for emotion analysis. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(4), 2135-2146.

4-Güven, Z. A., Diri, B., & Çakaloğlu, T. (2018, April). Classification of TurkishTweet emotions by n-stage Latent Dirichlet Allocation. In 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT) (pp. 1-4). IEEE.

5-Güven, Z. A., Diri, B., & Çakaloğlu, T. (2019, September). Comparison of Topic Modeling Methods for Type Detection of Turkish News. In 2019 4th International Conference on Computer Science and Engineering (UBMK) (pp. 150-154). IEEE.

6-GÜVEN, Z. A., Banu, D. İ. R. İ., & ÇAKALOĞLU, T. (2019). Emotion Detection with n-stage Latent Dirichlet Allocation for Turkish Tweets. Academic Platform Journal of Engineering and Science, 7(3), 467-472.

7-Güven, Z. A., Diri, B., & Çakaloğlu, T. Comparison Method for Emotion Detection of Twitter Users. In 2019 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1-5). IEEE.

References

[1] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation.Journal of Machine LearningResearch, 2003. ISSN 15324435. doi:10.1016/b978-0-12-411519-4.00006-9.

[2] Yong Chen, Hui Zhang, Rui Liu, Zhiwen Ye, and Jianying Lin.Experimental explorations on short texttopic mining between LDA and NMF based Schemes.Knowledge-Based Systems, 2019. ISSN 09507051.doi:10.1016/j.knosys.2018.08.011.

[3] Zekeriya Anil Güven, Banu Diri, and Tolgahan Çakaloˇglu. Classification of New Titles by Two Stage Latent DirichletAllocation. InProceedings - 2018 Innovations in Intelligent Systems and Applications Conference, ASYU 2018, 2018.ISBN 9781538677865. doi:10.1109/ASYU.2018.8554027.

[4] Guven, Zekeriya Anil, Banu Diri, and Tolgahan Cakaloglu. "Evaluation of Non-Negative Matrix Factorization and n-stage Latent Dirichlet Allocation for Emotion Analysis in Turkish Tweets." arXiv preprint arXiv:2110.00418 (2021).

Owner
Anıl Güven
Anıl Güven
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
[SIGGRAPH 2021 Asia] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning

DeepVecFont This is the official Pytorch implementation of the paper: Yizhi Wang and Zhouhui Lian. DeepVecFont: Synthesizing High-quality Vector Fonts

Yizhi Wang 146 Dec 18, 2022
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct

TensorLayer Community 159 Nov 22, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022