TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

Related tags

Deep LearningTGRNet
Overview

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition." arXiv preprint arXiv:2106.10598 (2021).

This work has been accepted for presentation at ICCV2021. The preview version has released at arXiv.org (https://arxiv.org/abs/2106.10598).

Abstract

A table arranging data in rows and columns is a very effective data structure, which has been widely used in business and scientific research. Considering large-scale tabular data in online and offline documents, automatic table recognition has attracted increasing attention from the document analysis community. Though human can easily understand the structure of tables, it remains a challenge for machines to understand that, especially due to a variety of different table layouts and styles. Existing methods usually model a table as either the markup sequence or the adjacency matrix between different table cells, failing to address the importance of the logical location of table cells, e.g., a cell is located in the first row and the second column of the table. In this paper, we reformulate the problem of table structure recognition as the table graph reconstruction, and propose an end-to-end trainable table graph reconstruction network (TGRNet) for table structure recognition. Specifically, the proposed method has two main branches, a cell detection branch and a cell logical location branch, to jointly predict the spatial location and the logical location of different cells. Experimental results on three popular table recognition datasets and a new dataset with table graph annotations (TableGraph-350K) demonstrate the effectiveness of the proposed TGRNet for table structure recognition.

Getting Started

Requirements

Create the environment from the environment.yml file conda env create --file environment.yml or install the software needed in your environment independently. If you meet some problems when installing PyTorch Geometric, please follow the official installation indroduction (https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html).

dependencies:
  - python==3.7.0
  - pip==20.2.4
  - pip:
    - dominate==2.5.1
    - imageio==2.8.0
    - networkx==2.3
    - numpy==1.18.2
    - opencv-python==4.4.0.46
    - pandas==1.0.3
    - pillow==7.1.1
    - torchfile==0.1.0
    - tqdm==4.45.0
    - visdom==0.1.8.9
    - Polygon3==3.0.8

PyTorch Installation

# CUDA 10.2
pip install torch==1.5.0 torchvision==0.6.0
# CUDA 10.1
pip install torch==1.5.0+CU101 torchvision==0.6.0+CU101 -f https://download.pytorch.org/whl/torch_stable.html
# CUDA 9.2
pip install torch==1.5.0+CU92 torchvision==0.6.0+CU92 -f https://download.pytorch.org/whl/torch_stable.html

PyTorch Geometric Installation

pip install torch-scatter==2.0.4 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-sparse==0.6.3 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-cluster==1.5.4 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-spline-conv==1.2.0 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-geometric

where ${CUDA} should be replaced by your specific CUDA version (cu92, cu101, cu102).

Datasets Preparation

cd ./datasets
tar -zxvf datasets.tar.gz
## The './datasets/' folder should look like:
- datasets/
  - cmdd/
  - icdar13table/
  - icdar19_ctdar/
  - tablegraph24k/

Pretrained Models Preparation

IMPORTANT Acoording to feedbacks from users (I also tested by myself), the pretrained models may not work for some enviroments. I have tested the following enviroment that can work as expected.

  - CUDA 9.2
  - torch 1.7.0+torchvision 0.8.0
  - torch-cluster 1.5.9
  - torch-geometric 1.6.3
  - torch-scatter 2.0.6
  - torch-sparse 0.6.9
  - torch-spline-conv 1.2.1
  • Download pretrained models from Google Dive or Alibaba Cloud.
  • Put checkpoints.tar.gz in "./checkpoints/" and extract it.
cd ./checkpoints
tar -zxvf checkpoints.tar.gz
## The './checkpoints/' folder should look like:
- checkpoints/
  - cmdd_overall/
  - icdar13table_overall/
  - icdar19_lloc/
  - tablegraph24k_overall/

Test

We have prepared scripts for test and you can just run them.

- test_cmdd.sh
- test_icdar13table.sh
- test_tablegraph-24k.sh
- test_icdar19ctdar.sh

Train

Todo

Owner
Wenyuan
Beijing Jiaotong University
Wenyuan
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio

CASIA-IVA-Lab 67 Dec 04, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023