Evaluating deep transfer learning for whole-brain cognitive decoding

Overview

Evaluating deep transfer learning for whole-brain cognitive decoding

This README file contains the following sections:

Project description

This project provides two main packages (see src/) that allow to apply DeepLight (see below) to the task-fMRI data of the Human Connectome Project (HCP):

  • deeplight is a simple python package that provides easy access to two pre-trained DeepLight architectures (2D-DeepLight and 3D-DeepLight; see below), designed for cognitive decoding of whole-brain fMRI data. Both architecturs were pre-trained with the fMRI data of 400 individuals in six of the seven HCP experimental tasks (all tasks except for the working memory task, which we left out for testing purposes; click here for details on the HCP data).
  • hcprepis a simple python package that allows to easily download the HCP task-fMRI data in a preprocessed format via the Amazon Web Services (AWS) S3 storage system and to transform these data into the tensorflow records data format.

Repository organization

├── poetry.lock         <- Overview of project dependencies
├── pyproject.toml      <- Lists details of installed dependencies
├── README.md           <- This README file
├── .gitignore          <- Specifies files that git should ignore
|
├── scrips/
|    ├── decode.py      <- An example of how to decode fMRI data with `deeplight`
|    ├── download.py    <- An example of how to download the preprocessed HCP fMRI data with `hcprep`
|    ├── interpret.py   <- An example of how to interpret fMRI data with `deeplight`
|    └── preprocess.sh  <- An example of how to preprocess fMRI data with `hcprep`
|    └── train.py       <- An example of how to train with `hcprep`
|
└── src/
|    ├── deeplight/
|    |    └──           <- `deeplight` package
|    ├── hcprep/
|    |    └──           <- 'hcprep' package
|    ├── modules/
|    |    └──           <- 'modules' package
|    └── setup.py       <- Makes 'deeplight', `hcprep`, and `modules` pip-installable (pip install -e .)  

Installation

deeplight and hcprep are written for python 3.6 and require a working python environment running on your computer (we generally recommend pyenv for python version management).

First, clone and switch to this repository:

git clone https://github.com/athms/evaluating-deeplight-transfer.git
cd evaluating-deeplight-transfer

This project uses python poetry for dependency management. To install all required dependencies with poetry, run:

poetry install

To then install deeplight, hcprep, and modules in your poetry environment, run:

cd src/
poetry run pip3 install -e .

Packages

HCPrep

hcprep stores the HCP task-fMRI data data locally in the Brain Imaging Data Structure (BIDS) format.

To make fMRI data usable for DL analyses with TensorFlow, hcprep can clean the downloaded fMRI data and store these in the TFRecords data format.

Getting data access: To download the HCP task-fMRI data, you will need AWS access to the HCP public data directory. A detailed instruction can be found here. Make sure to safely store the ACCESS_KEY and SECRET_KEY; they are required to access the data via the AWS S3 storage system.

AWS configuration: Setup your local AWS client (as described here) and add the following profile to '~/.aws/config'

[profile hcp]
region=eu-central-1

Choose the region based on your location.

TFR data storage: hcprep stores the preprocessed fMRI data locally in TFRecords format, with one entry for each input fMRI volume of the data, each containing the following features:

  • volume: the flattened voxel activations with shape 91x109x91 (flattened over the X (91), Y (109), and Z (91) dimensions)
  • task_id, subject_id, run_id: numerical id of task, subject, and run
  • tr: TR of the volume in the underlying experimental task
  • state: numerical label of the cognive state associated with the volume within its task (e.g., [0,1,2,3] for the four cognitive states of the working memory task)
  • onehot: one-hot encoding of the state across all experimental tasks that are used for training (e.g., there are 20 cognitive tasks across the seven experimental tasks of the HCP; the four cognitive states of the working memory task could thus be mapped to the last four positions of the one-hot encoding, with indices [16: 0, 17: 1, 18: 2, 19: 3])

Note that hcprep also provides basic descriptive information about the HCP task-fMRI data in info.basics:

hcp_info = hcprep.info.basics()

basics contains the following information:

  • tasks: names of all HCP experimental tasks ('EMOTION', 'GAMBLING', 'LANGUAGE', 'MOTOR', 'RELATIONAL', 'SOCIAL', 'WM')
  • subjects: dictionary containing 1000 subject IDs for each task
  • runs: run IDs ('LR', 'RL')
  • t_r: repetition time of the fMRI data in seconds (0.72)
  • states_per_task: dictionary containing the label of each cognitive state of each task
  • onehot_idx_per_task: index that is used to assign cognitive states of each task to the onehotencoding of the TFR-files (see onehot above)

For further details on the experimental tasks and their cognitive states, click here.

DeepLight

deeplight implements two DeepLight architectures ("2D" and "3D"), which can be accessed as deeplight.two (2D) and deeplight.three (3D).

Importantly, both DeepLight architectures operate on the level of individual whole-brain fMRI volumes (e.g., individual TRs).

2D-DeepLight: A whole-brain fMRI volume is first sliced into a sequence of axial 2D-images (from bottom-to-top). These images are passed to a DL model, consisting of a 2D-convolutional feature extractor as well as an LSTM unit and output layer. First, the 2D-convolutional feature extractor reduces the dimensionality of the axial brain images through a sequence of 2D-convolution layers. The resulting sequence of higher-level slice representations is then fed to a bi-directional LSTM, modeling the spatial dependencies of brain activity within and across brain slices. Lastly, 2D-DeepLight outputs a decoding decision about the cognitive state underlying the fMRI volume, through a softmax output layer with one output unit per cognitive state in the data.

3D-DeepLight: The whole-brain fMRI volume is passed to a 3D-convolutional feature extractor, consisting of a sequence of twelve 3D-convolution layers. The 3D-convolutional feature extractor directly projects the fMRI volume into a higher-level, but lower dimensional, representation of whole-brain activity, without the need of an LSTM. To make a decoding decision, 3D-DeepLight utilizes an output layer that is composed of a 1D- convolution and global average pooling layer as well as a softmax activation function. The 1D-convolution layer maps the higher-level representation of whole-brain activity of the 3D-convolutional feature extractor to one representation for each cognitive state in the data, while the global average pooling layer and softmax function then reduce these to a decoding decision.

To interpret the decoding decisions of the two DeepLight architectures, relating their decoding decisions to the fMRI data, deeplight makes use of the LRP technique. The LRP technique decomposes individual decoding decisions of a DL model into the contributions of the individual input features (here individual voxel activities) to these decisions.

Both deeplight architectures implement basic fit, decode, and interpret methods, next to other functionalities. For details on how to {train, decode, interpret} with deeplight, see scripts/.

For further methdological details regarding the two DeepLight architectures, see the upcoming preprint.

Note that we currently recommend to run any applications of interpret with 2D-DeepLight on CPU instead of GPU, due to its high memory demand (assuming that your available CPU memory is larger than your available GPU memory). This switch can be made by setting the environment variable export CUDA_VISIBLE_DEVICES="". We are currently working on reducing the overall memory demand of interpret with 2D-DeepLight and will push a code update soon.

Modules

modules is a fork of the modules module from interprettensor, which deeplight uses to build the 2D-DeepLight architecture. Note that modules is licensed differently from the other python packages in this repository (see modules/LICENSE).

Basic usage

You can find a set of example python scripts in scripts/, which illustrate how to download and preprocess task-fMRI data from the Human Connectome Project with hcprep and how to {train on, decode, interpret} fMRI data with the two DeepLight architectures of deeplight.

You can run individual scripts in your poetryenvironment with:

cd scripts/
poetry run python <SCRIPT NAME>
Owner
Armin Thomas
Ram and Vijay Shriram Data Science Fellow at Stanford Data Science
Armin Thomas
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

0 May 06, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
Veri Setinizi Yolov5 Formatına Dönüştürün

Veri Setinizi Yolov5 Formatına Dönüştürün! Bu Repo da Neler Var? Xml Formatındaki Veri Setini .Txt Formatına Çevirme Xml Formatındaki Dosyaları Silme

Kadir Nar 4 Aug 22, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022