Evaluating deep transfer learning for whole-brain cognitive decoding

Overview

Evaluating deep transfer learning for whole-brain cognitive decoding

This README file contains the following sections:

Project description

This project provides two main packages (see src/) that allow to apply DeepLight (see below) to the task-fMRI data of the Human Connectome Project (HCP):

  • deeplight is a simple python package that provides easy access to two pre-trained DeepLight architectures (2D-DeepLight and 3D-DeepLight; see below), designed for cognitive decoding of whole-brain fMRI data. Both architecturs were pre-trained with the fMRI data of 400 individuals in six of the seven HCP experimental tasks (all tasks except for the working memory task, which we left out for testing purposes; click here for details on the HCP data).
  • hcprepis a simple python package that allows to easily download the HCP task-fMRI data in a preprocessed format via the Amazon Web Services (AWS) S3 storage system and to transform these data into the tensorflow records data format.

Repository organization

├── poetry.lock         <- Overview of project dependencies
├── pyproject.toml      <- Lists details of installed dependencies
├── README.md           <- This README file
├── .gitignore          <- Specifies files that git should ignore
|
├── scrips/
|    ├── decode.py      <- An example of how to decode fMRI data with `deeplight`
|    ├── download.py    <- An example of how to download the preprocessed HCP fMRI data with `hcprep`
|    ├── interpret.py   <- An example of how to interpret fMRI data with `deeplight`
|    └── preprocess.sh  <- An example of how to preprocess fMRI data with `hcprep`
|    └── train.py       <- An example of how to train with `hcprep`
|
└── src/
|    ├── deeplight/
|    |    └──           <- `deeplight` package
|    ├── hcprep/
|    |    └──           <- 'hcprep' package
|    ├── modules/
|    |    └──           <- 'modules' package
|    └── setup.py       <- Makes 'deeplight', `hcprep`, and `modules` pip-installable (pip install -e .)  

Installation

deeplight and hcprep are written for python 3.6 and require a working python environment running on your computer (we generally recommend pyenv for python version management).

First, clone and switch to this repository:

git clone https://github.com/athms/evaluating-deeplight-transfer.git
cd evaluating-deeplight-transfer

This project uses python poetry for dependency management. To install all required dependencies with poetry, run:

poetry install

To then install deeplight, hcprep, and modules in your poetry environment, run:

cd src/
poetry run pip3 install -e .

Packages

HCPrep

hcprep stores the HCP task-fMRI data data locally in the Brain Imaging Data Structure (BIDS) format.

To make fMRI data usable for DL analyses with TensorFlow, hcprep can clean the downloaded fMRI data and store these in the TFRecords data format.

Getting data access: To download the HCP task-fMRI data, you will need AWS access to the HCP public data directory. A detailed instruction can be found here. Make sure to safely store the ACCESS_KEY and SECRET_KEY; they are required to access the data via the AWS S3 storage system.

AWS configuration: Setup your local AWS client (as described here) and add the following profile to '~/.aws/config'

[profile hcp]
region=eu-central-1

Choose the region based on your location.

TFR data storage: hcprep stores the preprocessed fMRI data locally in TFRecords format, with one entry for each input fMRI volume of the data, each containing the following features:

  • volume: the flattened voxel activations with shape 91x109x91 (flattened over the X (91), Y (109), and Z (91) dimensions)
  • task_id, subject_id, run_id: numerical id of task, subject, and run
  • tr: TR of the volume in the underlying experimental task
  • state: numerical label of the cognive state associated with the volume within its task (e.g., [0,1,2,3] for the four cognitive states of the working memory task)
  • onehot: one-hot encoding of the state across all experimental tasks that are used for training (e.g., there are 20 cognitive tasks across the seven experimental tasks of the HCP; the four cognitive states of the working memory task could thus be mapped to the last four positions of the one-hot encoding, with indices [16: 0, 17: 1, 18: 2, 19: 3])

Note that hcprep also provides basic descriptive information about the HCP task-fMRI data in info.basics:

hcp_info = hcprep.info.basics()

basics contains the following information:

  • tasks: names of all HCP experimental tasks ('EMOTION', 'GAMBLING', 'LANGUAGE', 'MOTOR', 'RELATIONAL', 'SOCIAL', 'WM')
  • subjects: dictionary containing 1000 subject IDs for each task
  • runs: run IDs ('LR', 'RL')
  • t_r: repetition time of the fMRI data in seconds (0.72)
  • states_per_task: dictionary containing the label of each cognitive state of each task
  • onehot_idx_per_task: index that is used to assign cognitive states of each task to the onehotencoding of the TFR-files (see onehot above)

For further details on the experimental tasks and their cognitive states, click here.

DeepLight

deeplight implements two DeepLight architectures ("2D" and "3D"), which can be accessed as deeplight.two (2D) and deeplight.three (3D).

Importantly, both DeepLight architectures operate on the level of individual whole-brain fMRI volumes (e.g., individual TRs).

2D-DeepLight: A whole-brain fMRI volume is first sliced into a sequence of axial 2D-images (from bottom-to-top). These images are passed to a DL model, consisting of a 2D-convolutional feature extractor as well as an LSTM unit and output layer. First, the 2D-convolutional feature extractor reduces the dimensionality of the axial brain images through a sequence of 2D-convolution layers. The resulting sequence of higher-level slice representations is then fed to a bi-directional LSTM, modeling the spatial dependencies of brain activity within and across brain slices. Lastly, 2D-DeepLight outputs a decoding decision about the cognitive state underlying the fMRI volume, through a softmax output layer with one output unit per cognitive state in the data.

3D-DeepLight: The whole-brain fMRI volume is passed to a 3D-convolutional feature extractor, consisting of a sequence of twelve 3D-convolution layers. The 3D-convolutional feature extractor directly projects the fMRI volume into a higher-level, but lower dimensional, representation of whole-brain activity, without the need of an LSTM. To make a decoding decision, 3D-DeepLight utilizes an output layer that is composed of a 1D- convolution and global average pooling layer as well as a softmax activation function. The 1D-convolution layer maps the higher-level representation of whole-brain activity of the 3D-convolutional feature extractor to one representation for each cognitive state in the data, while the global average pooling layer and softmax function then reduce these to a decoding decision.

To interpret the decoding decisions of the two DeepLight architectures, relating their decoding decisions to the fMRI data, deeplight makes use of the LRP technique. The LRP technique decomposes individual decoding decisions of a DL model into the contributions of the individual input features (here individual voxel activities) to these decisions.

Both deeplight architectures implement basic fit, decode, and interpret methods, next to other functionalities. For details on how to {train, decode, interpret} with deeplight, see scripts/.

For further methdological details regarding the two DeepLight architectures, see the upcoming preprint.

Note that we currently recommend to run any applications of interpret with 2D-DeepLight on CPU instead of GPU, due to its high memory demand (assuming that your available CPU memory is larger than your available GPU memory). This switch can be made by setting the environment variable export CUDA_VISIBLE_DEVICES="". We are currently working on reducing the overall memory demand of interpret with 2D-DeepLight and will push a code update soon.

Modules

modules is a fork of the modules module from interprettensor, which deeplight uses to build the 2D-DeepLight architecture. Note that modules is licensed differently from the other python packages in this repository (see modules/LICENSE).

Basic usage

You can find a set of example python scripts in scripts/, which illustrate how to download and preprocess task-fMRI data from the Human Connectome Project with hcprep and how to {train on, decode, interpret} fMRI data with the two DeepLight architectures of deeplight.

You can run individual scripts in your poetryenvironment with:

cd scripts/
poetry run python <SCRIPT NAME>
Owner
Armin Thomas
Ram and Vijay Shriram Data Science Fellow at Stanford Data Science
Armin Thomas
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab

VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4

23 Oct 26, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022