The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

Related tags

Deep LearningGCoNet
Overview

GCoNet

The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

Trained model

Download final_gconet.pth (Google Drive). And it is the training log.

Put final_gconet.pth at GCoNet/tmp/GCoNet_run1.

Run test.sh for evaluation.

Data Format

Put the DUTS_class (training dataset from GICD), CoCA, CoSOD3k and Cosal2015 datasets to GCoNet/data as the following structure:

GCoNet
   ├── other codes
   ├── ...
   │ 
   └── data
         ├──── images
         |       ├── DUTS_class (DUTS_class's image files)
         |       ├── CoCA (CoCA's image files)
         |       ├── CoSOD3k (CoSOD3k's image files)
         │       └── Cosal2015 (Cosal2015's image files)
         │ 
         └────── gts
                  ├── DUTS_class (DUTS_class's Groundtruth files)
                  ├── CoCA (CoCA's Groundtruth files)
                  ├── CoSOD3k (CoSOD3k's Groundtruth files)
                  └── Cosal2015 (Cosal2015's Groundtruth files)

Usage

Run sh all.sh for training (train_GPU0.sh) and testing (test.sh).

Prediction results

The co-saliency maps of GCoNet can be found at Google Drive.

Note and Discussion

In your training, you can usually obtain slightly worse performance on CoCA dataset and slightly better perofmance on Cosal2015 and CoSOD3k datasets. The performance fluctuation is around 1.0 point for Cosal2015 and CoSOD3k datasets and around 2.0 points for CoCA dataset.

We observed that the results on CoCA dataset are unstable when train the model multiple times, and the performance fluctuation can reach around 1.5 ponits (But our performance are still much better than other methods in the worst case).
Therefore, we provide our used training pairs and sequences with deterministic data augmentation to help you to reproduce our results on CoCA. (In different machines, these inputs and data augmentation are different but deterministic.) However, there is still randomness in the training stage, and you can obtain different performance on CoCA.

There are three possible reasons:

  1. It may be caused by the challenging images of CoCA dataset where the target objects are relative small and there are many non-target objects in a complex environment.
  2. The imperfect training dataset. We use the training dataset in GICD, whose labels are produced by the classification model. There are some noisy labels in the training dataset.
  3. The randomness of training groups. In our training, two groups are randomly picked for training. Different collaborative training groups have different training difficulty.

Possible research directions for performance stability:

  1. Reduce label noise. If you want to use the training dataset in GICD to train your model. It is better to use multiple powerful classification models (ensemble) to obtain better class labels.
  2. Deterministic training groups. For two collaborative image groups, you can explore different ways to pick the suitable groups, e.g., pick two most similar groups for hard example mining.

It is a potential research direction to obtain stable results on such challenging real-world images. We follow other CoSOD methods to report the best performance of our model. You need to train the model multiple times to obtain the best result on CoCA dataset. If you want more discussion about it, you can contact me ([email protected]).

Citation

@inproceedings{fan2021gconet,
title={Group Collaborative Learning for Co-Salient Object Detection},
author={Fan, Qi and Fan, Deng-Ping and Fu, Huazhu and Tang, Chi-Keung and Shao, Ling and Tai, Yu-Wing},
booktitle={CVPR},
year={2021}
}

Acknowledgements

Zhao Zhang gives us lots of helps! Our framework is built on his GICD.

Owner
Qi Fan
Qi Fan
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022