The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

Related tags

Deep LearningGCoNet
Overview

GCoNet

The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

Trained model

Download final_gconet.pth (Google Drive). And it is the training log.

Put final_gconet.pth at GCoNet/tmp/GCoNet_run1.

Run test.sh for evaluation.

Data Format

Put the DUTS_class (training dataset from GICD), CoCA, CoSOD3k and Cosal2015 datasets to GCoNet/data as the following structure:

GCoNet
   ├── other codes
   ├── ...
   │ 
   └── data
         ├──── images
         |       ├── DUTS_class (DUTS_class's image files)
         |       ├── CoCA (CoCA's image files)
         |       ├── CoSOD3k (CoSOD3k's image files)
         │       └── Cosal2015 (Cosal2015's image files)
         │ 
         └────── gts
                  ├── DUTS_class (DUTS_class's Groundtruth files)
                  ├── CoCA (CoCA's Groundtruth files)
                  ├── CoSOD3k (CoSOD3k's Groundtruth files)
                  └── Cosal2015 (Cosal2015's Groundtruth files)

Usage

Run sh all.sh for training (train_GPU0.sh) and testing (test.sh).

Prediction results

The co-saliency maps of GCoNet can be found at Google Drive.

Note and Discussion

In your training, you can usually obtain slightly worse performance on CoCA dataset and slightly better perofmance on Cosal2015 and CoSOD3k datasets. The performance fluctuation is around 1.0 point for Cosal2015 and CoSOD3k datasets and around 2.0 points for CoCA dataset.

We observed that the results on CoCA dataset are unstable when train the model multiple times, and the performance fluctuation can reach around 1.5 ponits (But our performance are still much better than other methods in the worst case).
Therefore, we provide our used training pairs and sequences with deterministic data augmentation to help you to reproduce our results on CoCA. (In different machines, these inputs and data augmentation are different but deterministic.) However, there is still randomness in the training stage, and you can obtain different performance on CoCA.

There are three possible reasons:

  1. It may be caused by the challenging images of CoCA dataset where the target objects are relative small and there are many non-target objects in a complex environment.
  2. The imperfect training dataset. We use the training dataset in GICD, whose labels are produced by the classification model. There are some noisy labels in the training dataset.
  3. The randomness of training groups. In our training, two groups are randomly picked for training. Different collaborative training groups have different training difficulty.

Possible research directions for performance stability:

  1. Reduce label noise. If you want to use the training dataset in GICD to train your model. It is better to use multiple powerful classification models (ensemble) to obtain better class labels.
  2. Deterministic training groups. For two collaborative image groups, you can explore different ways to pick the suitable groups, e.g., pick two most similar groups for hard example mining.

It is a potential research direction to obtain stable results on such challenging real-world images. We follow other CoSOD methods to report the best performance of our model. You need to train the model multiple times to obtain the best result on CoCA dataset. If you want more discussion about it, you can contact me ([email protected]).

Citation

@inproceedings{fan2021gconet,
title={Group Collaborative Learning for Co-Salient Object Detection},
author={Fan, Qi and Fan, Deng-Ping and Fu, Huazhu and Tang, Chi-Keung and Shao, Ling and Tai, Yu-Wing},
booktitle={CVPR},
year={2021}
}

Acknowledgements

Zhao Zhang gives us lots of helps! Our framework is built on his GICD.

Owner
Qi Fan
Qi Fan
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

dev 34 Dec 27, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022