The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

Related tags

Deep LearningGCoNet
Overview

GCoNet

The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

Trained model

Download final_gconet.pth (Google Drive). And it is the training log.

Put final_gconet.pth at GCoNet/tmp/GCoNet_run1.

Run test.sh for evaluation.

Data Format

Put the DUTS_class (training dataset from GICD), CoCA, CoSOD3k and Cosal2015 datasets to GCoNet/data as the following structure:

GCoNet
   ├── other codes
   ├── ...
   │ 
   └── data
         ├──── images
         |       ├── DUTS_class (DUTS_class's image files)
         |       ├── CoCA (CoCA's image files)
         |       ├── CoSOD3k (CoSOD3k's image files)
         │       └── Cosal2015 (Cosal2015's image files)
         │ 
         └────── gts
                  ├── DUTS_class (DUTS_class's Groundtruth files)
                  ├── CoCA (CoCA's Groundtruth files)
                  ├── CoSOD3k (CoSOD3k's Groundtruth files)
                  └── Cosal2015 (Cosal2015's Groundtruth files)

Usage

Run sh all.sh for training (train_GPU0.sh) and testing (test.sh).

Prediction results

The co-saliency maps of GCoNet can be found at Google Drive.

Note and Discussion

In your training, you can usually obtain slightly worse performance on CoCA dataset and slightly better perofmance on Cosal2015 and CoSOD3k datasets. The performance fluctuation is around 1.0 point for Cosal2015 and CoSOD3k datasets and around 2.0 points for CoCA dataset.

We observed that the results on CoCA dataset are unstable when train the model multiple times, and the performance fluctuation can reach around 1.5 ponits (But our performance are still much better than other methods in the worst case).
Therefore, we provide our used training pairs and sequences with deterministic data augmentation to help you to reproduce our results on CoCA. (In different machines, these inputs and data augmentation are different but deterministic.) However, there is still randomness in the training stage, and you can obtain different performance on CoCA.

There are three possible reasons:

  1. It may be caused by the challenging images of CoCA dataset where the target objects are relative small and there are many non-target objects in a complex environment.
  2. The imperfect training dataset. We use the training dataset in GICD, whose labels are produced by the classification model. There are some noisy labels in the training dataset.
  3. The randomness of training groups. In our training, two groups are randomly picked for training. Different collaborative training groups have different training difficulty.

Possible research directions for performance stability:

  1. Reduce label noise. If you want to use the training dataset in GICD to train your model. It is better to use multiple powerful classification models (ensemble) to obtain better class labels.
  2. Deterministic training groups. For two collaborative image groups, you can explore different ways to pick the suitable groups, e.g., pick two most similar groups for hard example mining.

It is a potential research direction to obtain stable results on such challenging real-world images. We follow other CoSOD methods to report the best performance of our model. You need to train the model multiple times to obtain the best result on CoCA dataset. If you want more discussion about it, you can contact me ([email protected]).

Citation

@inproceedings{fan2021gconet,
title={Group Collaborative Learning for Co-Salient Object Detection},
author={Fan, Qi and Fan, Deng-Ping and Fu, Huazhu and Tang, Chi-Keung and Shao, Ling and Tai, Yu-Wing},
booktitle={CVPR},
year={2021}
}

Acknowledgements

Zhao Zhang gives us lots of helps! Our framework is built on his GICD.

Owner
Qi Fan
Qi Fan
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph".

multilingual-mrc-isdg Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph". This r

Liyan 5 Dec 07, 2022
5 Jan 05, 2023
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022