PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Related tags

Deep LearningSAQ
Overview

Sharpness-aware Quantization for Deep Neural Networks

License

Recent Update

2021.11.23: We release the source code of SAQ.

Setup the environments

  1. Clone the repository locally:
git clone https://github.com/zhuang-group/SAQ
  1. Install pytorch 1.8+, tensorboard and prettytable
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
pip install tensorboard
pip install prettytable

Data preparation

ImageNet

  1. Download the ImageNet 2012 dataset from here, and prepare the dataset based on this script.

  2. Change the dataset path in link_imagenet.py and link the ImageNet-100 by

python link_imagenet.py

CIFAR-100

Download the CIFAR-100 dataset from here.

After downloading ImageNet and CIFAR-100, the file structure should look like:

dataset
├── imagenet
    ├── train
    │   ├── class1
    │   │   ├── img1.jpeg
    │   │   ├── img2.jpeg
    │   │   └── ...
    │   ├── class2
    │   │   ├── img3.jpeg
    │   │   └── ...
    │   └── ...
    └── val
        ├── class1
        │   ├── img4.jpeg
        │   ├── img5.jpeg
        │   └── ...
        ├── class2
        │   ├── img6.jpeg
        │   └── ...
        └── ...
├── cifar100
    ├── cifar-100-python
    │   ├── meta
    │   ├── test
    │   ├── train
    │   └── ...
    └── ...

Training

Fixed-precision quantization

  1. Download the pre-trained full-precision models from the model zoo.

  2. Train low-precision models.

To train low-precision ResNet-20 on CIFAR-100, run:

sh script/train_qsam_cifar_r20.sh

To train low-precision ResNet-18 on ImageNet, run:

sh script/train_qsam_imagenet_r18.sh

Mixed-precision quantization

  1. Download the pre-trained full-precision models from the model zoo.

  2. Train the configuration generator.

To train the configuration generator of ResNet-20 on CIFAR-100, run:

sh script/train_generator_cifar_r20.sh

To train the configuration generator on ImageNet, run:

sh script/train_generator_imagenet_r18.sh
  1. After training the configuration generator, run following commands to fine-tune the resulting models with the obtained bitwidth configurations on CIFAR-100 and ImageNet.
sh script/finetune_cifar_r20.sh
sh script/finetune_imagenet_r18.sh

Results on CIFAR-100

Network Method Bitwidth BOPs (M) Top-1 Acc. (%) Top-5 Acc. (%)
ResNet-20 SAQ 4 674.6 68.7 91.2
ResNet-20 SAMQ MP 659.3 68.7 91.2
ResNet-20 SAQ 3 392.1 67.7 90.8
ResNet-20 SAMQ MP 374.4 68.6 91.2
MobileNetV2 SAQ 4 1508.9 75.6 93.7
MobileNetV2 SAMQ MP 1482.1 75.5 93.6
MobileNetV2 SAQ 3 877.1 74.4 93.2
MobileNetV2 SAMQ MP 869.5 75.5 93.7

Results on ImageNet

Network Method Bitwidth BOPs (G) Top-1 Acc. (%) Top-5 Acc. (%)
ResNet-18 SAQ 4 34.7 71.3 90.0
ResNet-18 SAMQ MP 33.7 71.4 89.9
ResNet-18 SAQ 2 14.4 67.1 87.3
MobileNetV2 SAQ 4 5.3 70.2 89.4
MobileNetV2 SAMQ MP 5.3 70.3 89.4

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Acknowledgement

This repository has adopted codes from SAM, ASAM and ESAM, we thank the authors for their open-sourced code.

You might also like...
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Comments
  • Quantize_first_last_layer

    Quantize_first_last_layer

    Hi! I noticed that in your code, you set bits_weights=8 and bits_activations=32 for first layer as default, it's not what is claimed in your paper " For the first and last layers of all quantized models, we quantize both weights and activations to 8-bit. " And I see an accuracy drop if I adjust the bits_activations to 8 for the first layer, could u please explain what is the reason? Thanks!

    opened by mmmiiinnnggg 0
  • 代码问题请求帮助

    代码问题请求帮助

    你好,带佬的代码写的很好,有部分代码不太懂,想请教一下, parser.add_argument( "--arch_bits", type=lambda s: [float(item) for item in s.split(",")] if len(s) != 0 else "", default=" ", help="bits configuration of each layer",

    if len(args.arch_bits) != 0: if args.wa_same_bit: set_wae_bits(model, args.arch_bits) elif args.search_w_bit: set_w_bits(model, args.arch_bits) else: set_bits(model, args.arch_bits) show_bits(model) logger.info("Set arch bits to: {}".format(args.arch_bits)) logger.info(model) 这个arch_bits主要是做什么的呢,卡在这里有段时间了

    opened by LKAMING97 0
Releases(v0.1.1)
Owner
Zhuang AI Group
Zhuang AI Group
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023