PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Related tags

Deep LearningSAQ
Overview

Sharpness-aware Quantization for Deep Neural Networks

License

Recent Update

2021.11.23: We release the source code of SAQ.

Setup the environments

  1. Clone the repository locally:
git clone https://github.com/zhuang-group/SAQ
  1. Install pytorch 1.8+, tensorboard and prettytable
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
pip install tensorboard
pip install prettytable

Data preparation

ImageNet

  1. Download the ImageNet 2012 dataset from here, and prepare the dataset based on this script.

  2. Change the dataset path in link_imagenet.py and link the ImageNet-100 by

python link_imagenet.py

CIFAR-100

Download the CIFAR-100 dataset from here.

After downloading ImageNet and CIFAR-100, the file structure should look like:

dataset
├── imagenet
    ├── train
    │   ├── class1
    │   │   ├── img1.jpeg
    │   │   ├── img2.jpeg
    │   │   └── ...
    │   ├── class2
    │   │   ├── img3.jpeg
    │   │   └── ...
    │   └── ...
    └── val
        ├── class1
        │   ├── img4.jpeg
        │   ├── img5.jpeg
        │   └── ...
        ├── class2
        │   ├── img6.jpeg
        │   └── ...
        └── ...
├── cifar100
    ├── cifar-100-python
    │   ├── meta
    │   ├── test
    │   ├── train
    │   └── ...
    └── ...

Training

Fixed-precision quantization

  1. Download the pre-trained full-precision models from the model zoo.

  2. Train low-precision models.

To train low-precision ResNet-20 on CIFAR-100, run:

sh script/train_qsam_cifar_r20.sh

To train low-precision ResNet-18 on ImageNet, run:

sh script/train_qsam_imagenet_r18.sh

Mixed-precision quantization

  1. Download the pre-trained full-precision models from the model zoo.

  2. Train the configuration generator.

To train the configuration generator of ResNet-20 on CIFAR-100, run:

sh script/train_generator_cifar_r20.sh

To train the configuration generator on ImageNet, run:

sh script/train_generator_imagenet_r18.sh
  1. After training the configuration generator, run following commands to fine-tune the resulting models with the obtained bitwidth configurations on CIFAR-100 and ImageNet.
sh script/finetune_cifar_r20.sh
sh script/finetune_imagenet_r18.sh

Results on CIFAR-100

Network Method Bitwidth BOPs (M) Top-1 Acc. (%) Top-5 Acc. (%)
ResNet-20 SAQ 4 674.6 68.7 91.2
ResNet-20 SAMQ MP 659.3 68.7 91.2
ResNet-20 SAQ 3 392.1 67.7 90.8
ResNet-20 SAMQ MP 374.4 68.6 91.2
MobileNetV2 SAQ 4 1508.9 75.6 93.7
MobileNetV2 SAMQ MP 1482.1 75.5 93.6
MobileNetV2 SAQ 3 877.1 74.4 93.2
MobileNetV2 SAMQ MP 869.5 75.5 93.7

Results on ImageNet

Network Method Bitwidth BOPs (G) Top-1 Acc. (%) Top-5 Acc. (%)
ResNet-18 SAQ 4 34.7 71.3 90.0
ResNet-18 SAMQ MP 33.7 71.4 89.9
ResNet-18 SAQ 2 14.4 67.1 87.3
MobileNetV2 SAQ 4 5.3 70.2 89.4
MobileNetV2 SAMQ MP 5.3 70.3 89.4

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Acknowledgement

This repository has adopted codes from SAM, ASAM and ESAM, we thank the authors for their open-sourced code.

You might also like...
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Comments
  • Quantize_first_last_layer

    Quantize_first_last_layer

    Hi! I noticed that in your code, you set bits_weights=8 and bits_activations=32 for first layer as default, it's not what is claimed in your paper " For the first and last layers of all quantized models, we quantize both weights and activations to 8-bit. " And I see an accuracy drop if I adjust the bits_activations to 8 for the first layer, could u please explain what is the reason? Thanks!

    opened by mmmiiinnnggg 0
  • 代码问题请求帮助

    代码问题请求帮助

    你好,带佬的代码写的很好,有部分代码不太懂,想请教一下, parser.add_argument( "--arch_bits", type=lambda s: [float(item) for item in s.split(",")] if len(s) != 0 else "", default=" ", help="bits configuration of each layer",

    if len(args.arch_bits) != 0: if args.wa_same_bit: set_wae_bits(model, args.arch_bits) elif args.search_w_bit: set_w_bits(model, args.arch_bits) else: set_bits(model, args.arch_bits) show_bits(model) logger.info("Set arch bits to: {}".format(args.arch_bits)) logger.info(model) 这个arch_bits主要是做什么的呢,卡在这里有段时间了

    opened by LKAMING97 0
Releases(v0.1.1)
Owner
Zhuang AI Group
Zhuang AI Group
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit

BigScience Workshop 253 Dec 27, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023