Deep Multimodal Neural Architecture Search

Related tags

Deep Learningmmnas
Overview

MMNas: Deep Multimodal Neural Architecture Search

This repository corresponds to the PyTorch implementation of the MMnas for visual question answering (VQA), visual grounding (VGD), and image-text matching (ITM) tasks.

example-image

Prerequisites

Software and Hardware Requirements

You may need a machine with at least 4 GPU (>= 8GB), 50GB memory for VQA and VGD and 150GB for ITM and 50GB free disk space. We strongly recommend to use a SSD drive to guarantee high-speed I/O.

You should first install some necessary packages.

  1. Install Python >= 3.6

  2. Install Cuda >= 9.0 and cuDNN

  3. Install PyTorch >= 0.4.1 with CUDA (Pytorch 1.x is also supported).

  4. Install SpaCy and initialize the GloVe as follows:

    $ pip install -r requirements.txt
    $ wget https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz -O en_vectors_web_lg-2.1.0.tar.gz
    $ pip install en_vectors_web_lg-2.1.0.tar.gz

Dataset Preparations

Please follow the instructions in dataset_setup.md to download the datasets and features.

Search

To search an optimal architecture for a specific task, run

$ python3 search_[vqa|vgd|vqa].py

At the end of each searching epoch, we will output the optimal architecture (choosing operators with largest architecture weight for every block) accroding to current architecture weights. When the optimal architecture doesn't change for several continuous epochs, you can kill the searching process manually.

Training

The following script will start training network with the optimal architecture that we've searched by MMNas:

$ python3 train_[vqa|vgd|itm].py --RUN='train' --ARCH_PATH='./arch/train_vqa.json'

To add:

  1. --VERSION=str, e.g.--VERSION='mmnas_vqa' to assign a name for your this model.

  2. --GPU=str, e.g.--GPU='0, 1, 2, 3' to train the model on specified GPU device.

  3. --NW=int, e.g.--NW=8 to accelerate I/O speed.

  1. --RESUME to start training with saved checkpoint parameters.

  2. --ARCH_PATH can use the different searched architectures.

If you want to evaluate an architecture that you got from seaching stage, for example, it's the output architecture at the 50-th searching epoch for vqa model, you can run

$ python3 train_vqa.py --RUN='train' --ARCH_PATH='[PATH_TO_YOUR_SEARCHING_LOG]' --ARCH_EPOCH=50

Validation and Testing

Offline Evaluation

It's convenient to modify follows args: --RUN={'val', 'test'} --CKPT_PATH=[Your Model Path] to Run val or test Split.

Example:

$ python3 train_vqa.py --RUN='test' --CKPT_PATH=[Your Model Path] --ARCH_PATH=[Searched Architecture Path]

Online Evaluation (ONLY FOR VQA)

Test Result files will stored in ./logs/ckpts/result_test/result_train_[Your Version].json

You can upload the obtained result file to Eval AI to evaluate the scores on test-dev and test-std splits.

Pretrained Models

We provide the pretrained models in pretrained_models.md to reproduce the experimental results in our paper.

Citation

If this repository is helpful for your research, we'd really appreciate it if you could cite the following paper:

@article{yu2020mmnas,
  title={Deep Multimodal Neural Architecture Search},
  author={Yu, Zhou and Cui, Yuhao and Yu, Jun and Wang, Meng and Tao, Dacheng and Tian, Qi},
  journal={Proceedings of the 28th ACM International Conference on Multimedia},
  pages = {3743--3752},
  year={2020}
}
Owner
Vision and Language Group@ MIL
Hangzhou Dianzi University
Vision and Language Group@ MIL
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.

tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es

26 Dec 11, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022