MoveNet Single Pose on DepthAI

Overview

MoveNet Single Pose tracking on DepthAI

Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...).

A convolutional neural network model that runs on RGB images and predicts human joint locations of a single person. Two variant: Lightning and Thunder, the latter being slower but more accurate. MoveNet uses an smart cropping based on detections from the previous frame when the input is a sequence of frames. This allows the model to devote its attention and resources to the main subject, resulting in much better prediction quality without sacrificing the speed.

Demo

For MoveNet on OpenVINO, please visit : openvino_movenet

Architecture: Host mode vs Edge mode

The cropping algorithm determines from the body detected in frame N, on which region of frame N+1 the inference will run. The mode (Host or Edge) describes where this algorithm is run :

  • in Host mode, the cropping algorithm is run on the host cpu. Only this mode allows images or video files as input. The flow of information between the host and the device is bi-directional: in particular, the host sends frames or cropping instructions to the device;
  • in Edge mode, tthe cropping algorithm is run on the MyriadX. So, in this mode, all the bricks of MoveNet (inference, determination of the cropping region for next frame, cropping) are executed on the device. The only information exchanged are the body keypoints and the camera video frame.

Note: in either mode, when using the color camera, you can choose to disable the sending of the video frame to the host, by specifying "rgb_laconic" instead of "rgb" as input source.

Architecture

Install

Currently, the scripting node capabilty is an alpha release. It is important to use the version specified in the requirements.txt

Install the python packages DepthAI, Opencv with the following command:

python3 -m pip install -r requirements.txt

Run

Usage:

> python3 demo.py -h                                               
usage: demo.py [-h] [-e] [-m MODEL] [-i INPUT] [-s SCORE_THRESHOLD]
               [--internal_fps INTERNAL_FPS]
               [--internal_frame_size INTERNAL_FRAME_SIZE] [-o OUTPUT]

optional arguments:
  -h, --help            show this help message and exit
  -e, --edge            Use Edge mode (the cropping algorithm runs on device)
  -m MODEL, --model MODEL
                        Model to use : 'thunder' or 'lightning' or path of a
                        blob file (default=thunder
  -i INPUT, --input INPUT
                        'rgb' or 'rgb_laconic' or path to video/image file to
                        use as input (default: rgb)
  -s SCORE_THRESHOLD, --score_threshold SCORE_THRESHOLD
                        Confidence score to determine whether a keypoint
                        prediction is reliable (default=0.200000)
  --internal_fps INTERNAL_FPS
                        Fps of internal color camera. Too high value lower NN
                        fps (default: depends on the model
  --internal_frame_size INTERNAL_FRAME_SIZE
                        Internal color camera frame size (= width = height) in
                        pixels (default=640)
  -o OUTPUT, --output OUTPUT
                        Path to output video file

Examples :

  • To use default internal color camera as input with the Thunder model (Host mode):

    python3 demo.py

  • To use default internal color camera as input with the Thunder model (Edge mode):

    python3 demo.py -e

  • To use default internal color camera as input with the Lightning model :

    python3 demo.py -m lightning

  • To use a file (video or image) as input with the Thunder model :

    python3 demo.py -i filename

  • When using the internal camera, to change its FPS to 15 :

    python3 BlazeposeOpenvino.py --internal_fps 15

    Note: by default, the internal camera FPS is set to 26 for Lightning, and to 12 for Thunder. These values are based on my own observations. Please, don't hesitate to play with this parameter to find the optimal value. If you observe that your FPS is well below the default value, you should lower the FPS with this option until the set FPS is just above the observed FPS.

  • When using the internal camera, you may not need to work with the full resolution. You can work with a lower resolution (and win a bit of FPS) by using this option:

    python3 BlazeposeOpenvino.py --internal_frame_size 450

    Note: currently, depthai supports only some possible values for this argument. The value you specify will be replaced by the closest possible value (here 432 instead of 450).

Keypress Function
space Pause
c Show/hide cropping region
f Show/hide FPS

The models

They were generated by PINTO from the original models Thunder V3 and Lightning V3. Currently, they are an slight adaptation of the models available there: https://github.com/PINTO0309/PINTO_model_zoo/tree/main/115_MoveNet. This adaptation should be temporary and is due to the non support by the depthai ImageManip node of interleaved images.

Code

To facilitate reusability, the code is splitted in 2 classes:

  • MovenetDepthai, which is responsible of computing the body keypoints. The importation of this class depends on the mode:
# For Host mode:
from MovenetDepthai import MovenetDepthai
# For Edge mode:
from MovenetDepthaiEdge import MovenetDepthai
  • MovenetRenderer, which is responsible of rendering the keypoints and the skeleton on the video frame.

This way, you can replace the renderer from this repository and write and personalize your own renderer (for some projects, you may not even need a renderer).

The file demo.py is a representative example of how to use these classes:

from MovenetDepthai import MovenetDepthai
from MovenetRenderer import MovenetRenderer

# I have removed the argparse stuff to keep only the important code

pose = MovenetDepthai(input_src=args.input, 
            model=args.model,    
            score_thresh=args.score_threshold,           
            internal_fps=args.internal_fps,
            internal_frame_size=args.internal_frame_size
            )

renderer = MovenetRenderer(
                pose, 
                output=args.output)

while True:
    # Run blazepose on next frame
    frame, body = pose.next_frame()
    if frame is None: break
    # Draw 2d skeleton
    frame = renderer.draw(frame, body)
    key = renderer.waitKey(delay=1)
    if key == 27 or key == ord('q'):
        break
renderer.exit()
pose.exit()

Examples

Semaphore alphabet Sempahore alphabet
Yoga Pose Classification Yoga Pose Classification

Credits

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.

Vehicle Detection Video demo Overview Vehicle detection using these machine learning and computer vision techniques. Linear SVM HOG(Histogram of Orien

hata 1.1k Dec 18, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022