Few-NERD: Not Only a Few-shot NER Dataset

Related tags

Deep LearningFew-NERD
Overview

Few-NERD: Not Only a Few-shot NER Dataset

This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset. Check out the website of Few-NERD.

Contents

Overview

Few-NERD is a large-scale, fine-grained manually annotated named entity recognition dataset, which contains 8 coarse-grained types, 66 fine-grained types, 188,200 sentences, 491,711 entities and 4,601,223 tokens. Three benchmark tasks are built, one is supervised: Few-NERD (SUP) and the other two are few-shot: Few-NERD (INTRA) and Few-NERD (INTER).

The schema of Few-NERD is:

Few-NERD is manually annotated based on the context, for example, in the sentence "London is the fifth album by the British rock band…", the named entity London is labeled as Art-Music.

Requirements

 Run the following script to install the remaining dependencies,

pip install -r requirements.txt

Few-NERD Dataset

Get the Data

  • Few-NERD contains 8 coarse-grained types, 66 fine-grained types, 188,200 sentences, 491,711 entities and 4,601,223 tokens.
  • We have splitted the data into 3 training mode. One for supervised setting-supervised, theo ther two for few-shot setting inter and intra. Each contains three files train.txtdev.txttest.txtsuperviseddatasets are randomly split. inter datasets are randomly split within coarse type, i.e. each file contains all 8 coarse types but different fine-grained types. intra datasets are randomly split by coarse type.
  • The splitted dataset can be downloaded automatically once you run the model. If you want to download the data manually, run data/download.sh, remember to add parameter supervised/inter/intra to indicte the type of the dataset

To obtain the three benchmarks datasets of Few-NERD, simply run the bash file data/download.sh

bash data/download.sh supervised

Data Format

The data are pre-processed into the typical NER data forms as below (token\tlabel).

Between	O
1789	O
and	O
1793	O
he	O
sat	O
on	O
a	O
committee	O
reviewing	O
the	O
administrative	MISC-law
constitution	MISC-law
of	MISC-law
Galicia	MISC-law
to	O
little	O
effect	O
.	O

Structure

The structure of our project is:

--util
| -- framework.py
| -- data_loader.py
| -- viterbi.py             # viterbi decoder for structshot only
| -- word_encoder
| -- fewshotsampler.py

-- proto.py                 # prototypical model
-- nnshot.py                # nnshot model

-- train_demo.py            # main training script

Key Implementations

Sampler

As established in our paper, we design an N way K~2K shot sampling strategy in our work , the implementation is sat util/fewshotsampler.py.

ProtoBERT

Prototypical nets with BERT is implemented in model/proto.py.

How to Run

Run train_demo.py. The arguments are presented below. The default parameters are for proto model on intermode dataset.

-- mode                 training mode, must be inter, intra, or supervised
-- trainN               N in train
-- N                    N in val and test
-- K                    K shot
-- Q                    Num of query per class
-- batch_size           batch size
-- train_iter           num of iters in training
-- val_iter             num of iters in validation
-- test_iter            num of iters in testing
-- val_step             val after training how many iters
-- model                model name, must be proto, nnshot or structshot
-- max_length           max length of tokenized sentence
-- lr                   learning rate
-- weight_decay         weight decay
-- grad_iter            accumulate gradient every x iterations
-- load_ckpt            path to load model
-- save_ckpt            path to save model
-- fp16                 use nvidia apex fp16
-- only_test            no training process, only test
-- ckpt_name            checkpoint name
-- seed                 random seed
-- pretrain_ckpt        bert pre-trained checkpoint
-- dot                  use dot instead of L2 distance in distance calculation
-- use_sgd_for_bert     use SGD instead of AdamW for BERT.
# only for structshot
-- tau                  StructShot parameter to re-normalizes the transition probabilities
  • For hyperparameter --tau in structshot, we use 0.32 in 1-shot setting, 0.318 for 5-way-5-shot setting, and 0.434 for 10-way-5-shot setting.

  • Take structshot model on inter dataset for example, the expriments can be run as follows.

5-way-1~5-shot

python3 train_demo.py  --train data/mydata/train-inter.txt \
--val data/mydata/val-inter.txt --test data/mydata/test-inter.txt \
--lr 1e-3 --batch_size 2 --trainN 5 --N 5 --K 1 --Q 1 \
--train_iter 10000 --val_iter 500 --test_iter 5000 --val_step 1000 \
--max_length 60 --model structshot --tau 0.32

5-way-5~10-shot

python3 train_demo.py  --train data/mydata/train-inter.txt \
--val data/mydata/val-inter.txt --test data/mydata/test-inter.txt \
--lr 1e-3 --batch_size 2 --trainN 5 --N 5 --K 5 --Q 5 \
--train_iter 10000 --val_iter 500 --test_iter 5000 --val_step 1000 \
--max_length 60 --model structshot --tau 0.318

10-way-1~5-shot

python3 train_demo.py  --train data/mydata/train-inter.txt \
--val data/mydata/val-inter.txt --test data/mydata/test-inter.txt \
--lr 1e-3 --batch_size 2 --trainN 10 --N 10 --K 1 --Q 1 \
--train_iter 10000 --val_iter 500 --test_iter 5000 --val_step 1000 \
--max_length 60 --model structshot --tau 0.32

10-way-5~10-shot

python3 train_demo.py  --train data/mydata/train-inter.txt \
--val data/mydata/val-inter.txt --test data/mydata/test-inter.txt \
--lr 1e-3 --batch_size 2 --trainN 5 --N 5 --K 5 --Q 1 \
--train_iter 10000 --val_iter 500 --test_iter 5000 --val_step 1000 \
--max_length 60 --model structshot --tau 0.434

Citation

If you use Few-NERD in your work, please cite our paper:

@inproceedings{ding2021few,
title={Few-NERD: A Few-Shot Named Entity Recognition Dataset},
author={Ding, Ning and Xu, Guangwei and Chen, Yulin, and Wang, Xiaobin and Han, Xu and Xie, Pengjun and Zheng, Hai-Tao and Liu, Zhiyuan},
booktitle={ACL-IJCNLP},
year={2021}
}

Connection

If you have any questions, feel free to contact

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023