QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Overview

logo

GitHub last commit

Introduction

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented. QRec has a lightweight architecture and provides user-friendly interfaces. It can facilitate model implementation and evaluation.
Founder and principal contributor: @Coder-Yu
Other contributors: @DouTong @Niki666 @HuXiLiFeng @BigPowerZ @flyxu
Supported by: @AIhongzhi (A/Prof. Hongzhi Yin, UQ), @mingaoo (A/Prof. Min Gao, CQU)

What's New

12/10/2021 - BUIR proposed in SIGIR'21 paper has been added.
30/07/2021 - We have transplanted QRec from py2 to py3.
07/06/2021 - SEPT proposed in our KDD'21 paper has been added.
16/05/2021 - SGL proposed in SIGIR'21 paper has been added.
16/01/2021 - MHCN proposed in our WWW'21 paper has been added.
22/09/2020 - DiffNet proposed in SIGIR'19 has been added.
19/09/2020 - DHCF proposed in KDD'20 has been added.
29/07/2020 - ESRF proposed in my TKDE paper has been added.
23/07/2020 - LightGCN proposed in SIGIR'20 has been added.
17/09/2019 - NGCF proposed in SIGIR'19 has been added.
13/08/2019 - RSGAN proposed in ICDM'19 has been added.
09/08/2019 - Our paper is accepted as full research paper by ICDM'19.
20/02/2019 - IRGAN proposed in SIGIR'17 has been added.
12/02/2019 - CFGAN proposed in CIKM'18 has been added.

Architecture

QRec Architecture

Workflow

QRec Architecture

Features

  • Cross-platform: QRec can be easily deployed and executed in any platforms, including MS Windows, Linux and Mac OS.
  • Fast execution: QRec is based on Numpy, Tensorflow and some lightweight structures, which make it run fast.
  • Easy configuration: QRec configs recommenders with a configuration file and provides multiple evaluation protocols.
  • Easy expansion: QRec provides a set of well-designed recommendation interfaces by which new algorithms can be easily implemented.

Requirements

  • gensim==4.1.2
  • joblib==1.1.0
  • mkl==2022.0.0
  • mkl_service==2.4.0
  • networkx==2.6.2
  • numba==0.53.1
  • numpy==1.20.3
  • scipy==1.6.2
  • tensorflow==1.14.0

Usage

There are two ways to run the recommendation models in QRec:

  • 1.Configure the xx.conf file in the directory named config. (xx is the name of the model you want to run)
  • 2.Run main.py.

Or

  • Follow the codes in snippet.py.

For more details, we refer you to the handbook of QRec.

Configuration

Essential Options

Entry Example Description
ratings D:/MovieLens/100K.txt Set the file path of the dataset. Format: each row separated by empty, tab or comma symbol.
social D:/MovieLens/trusts.txt Set the file path of the social dataset. Format: each row separated by empty, tab or comma symbol.
ratings.setup -columns 0 1 2 -columns: (user, item, rating) columns of rating data are used.
social.setup -columns 0 1 2 -columns: (trustor, trustee, weight) columns of social data are used.
mode.name UserKNN/ItemKNN/SlopeOne/etc. name of the recommendation model.
evaluation.setup -testSet ../dataset/testset.txt Main option: -testSet, -ap, -cv (choose one of them)
-testSet path/to/test/file (need to specify the test set manually)
-ap ratio (ap means that the ratings are automatically partitioned into training set and test set, the number is the ratio of the test set. e.g. -ap 0.2)
-cv k (-cv means cross validation, k is the number of the fold. e.g. -cv 5)
-predict path/to/user list/file (predict for a given list of users without evaluation; need to mannually specify the user list file (each line presents a user))
Secondary option:-b, -p, -cold, -tf, -val (multiple choices)
-val ratio (model test would be conducted on the validation set which is generated by randomly sampling the training dataset with the given ratio.)
-b thres (binarizing the rating values. Ratings equal or greater than thres will be changed into 1, and ratings lower than thres will be left out. e.g. -b 3.0)
-p (if this option is added, the cross validation wll be executed parallelly, otherwise executed one by one)
-tf (model training will be conducted on TensorFlow (only applicable and needed for shallow models))
-cold thres (evaluation on cold-start users; users in the training set with rated items more than thres will be removed from the test set)
item.ranking off -topN -1 Main option: whether to do item ranking
-topN N1,N2,N3...: the length of the recommendation list. *QRec can generate multiple evaluation results for different N at the same time
output.setup on -dir ./Results/ Main option: whether to output recommendation results
-dir path: the directory path of output results.

Memory-based Options

similarity pcc/cos Set the similarity method to use. Options: PCC, COS;
num.neighbors 30 Set the number of neighbors used for KNN-based algorithms such as UserKNN, ItemKNN.

Model-based Options

num.factors 5/10/20/number Set the number of latent factors
num.max.epoch 100/200/number Set the maximum number of epoch for iterative recommendation algorithms.
learnRate -init 0.01 -max 1 -init initial learning rate for iterative recommendation algorithms;
-max: maximum learning rate (default 1);
reg.lambda -u 0.05 -i 0.05 -b 0.1 -s 0.1 -u: user regularizaiton; -i: item regularization; -b: bias regularizaiton; -s: social regularization

Implement Your Model

  • 1.Make your new algorithm generalize the proper base class.
  • 2.Reimplement some of the following functions as needed.
          - readConfiguration()
          - printAlgorConfig()
          - initModel()
          - trainModel()
          - saveModel()
          - loadModel()
          - predictForRanking()
          - predict()

For more details, we refer you to the handbook of QRec.

Implemented Algorithms

       
Rating prediction Paper
SlopeOne Lemire and Maclachlan, Slope One Predictors for Online Rating-Based Collaborative Filtering, SDM'05.
PMF Salakhutdinov and Mnih, Probabilistic Matrix Factorization, NIPS'08.
SoRec Ma et al., SoRec: Social Recommendation Using Probabilistic Matrix Factorization, SIGIR'08.
SVD++ Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model, SIGKDD'08.
RSTE Ma et al., Learning to Recommend with Social Trust Ensemble, SIGIR'09.
SVD Y. Koren, Collaborative Filtering with Temporal Dynamics, SIGKDD'09.
SocialMF Jamali and Ester, A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks, RecSys'10.
EE Khoshneshin et al., Collaborative Filtering via Euclidean Embedding, RecSys'10.
SoReg Ma et al., Recommender systems with social regularization, WSDM'11.
LOCABAL Tang, Jiliang, et al. Exploiting local and global social context for recommendation, AAAI'13.
SREE Li et al., Social Recommendation Using Euclidean embedding, IJCNN'17.
CUNE-MF Zhang et al., Collaborative User Network Embedding for Social Recommender Systems, SDM'17.

                       
Item Ranking Paper
BPR Rendle et al., BPR: Bayesian Personalized Ranking from Implicit Feedback, UAI'09.
WRMF Yifan Hu et al.Collaborative Filtering for Implicit Feedback Datasets, KDD'09.
SBPR Zhao et al., Leveraing Social Connections to Improve Personalized Ranking for Collaborative Filtering, CIKM'14
ExpoMF Liang et al., Modeling User Exposure in Recommendation, WWW''16.
CoFactor Liang et al., Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence, RecSys'16.
TBPR Wang et al. Social Recommendation with Strong and Weak Ties, CIKM'16'.
CDAE Wu et al., Collaborative Denoising Auto-Encoders for Top-N Recommender Systems, WSDM'16'.
DMF Xue et al., Deep Matrix Factorization Models for Recommender Systems, IJCAI'17'.
NeuMF He et al. Neural Collaborative Filtering, WWW'17.
CUNE-BPR Zhang et al., Collaborative User Network Embedding for Social Recommender Systems, SDM'17'.
IRGAN Wang et al., IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models, SIGIR'17'.
SERec Wang et al., Collaborative Filtering with Social Exposure: A Modular Approach to Social Recommendation, AAAI'18'.
APR He et al., Adversarial Personalized Ranking for Recommendation, SIGIR'18'.
IF-BPR Yu et al. Adaptive Implicit Friends Identification over Heterogeneous Network for Social Recommendation, CIKM'18'.
CFGAN Chae et al. CFGAN: A Generic Collaborative Filtering Framework based on Generative Adversarial Networks, CIKM'18.
NGCF Wang et al. Neural Graph Collaborative Filtering, SIGIR'19'.
DiffNet Wu et al. A Neural Influence Diffusion Model for Social Recommendation, SIGIR'19'.
RSGAN Yu et al. Generating Reliable Friends via Adversarial Learning to Improve Social Recommendation, ICDM'19'.
LightGCN He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation, SIGIR'20.
DHCF Ji et al. Dual Channel Hypergraph Collaborative Filtering, KDD'20.
ESRF Yu et al. Enhancing Social Recommendation with Adversarial Graph Convlutional Networks, TKDE'20.
MHCN Yu et al. Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation, WWW'21.
SGL Wu et al. Self-supervised Graph Learning for Recommendation, SIGIR'21.
SEPT Yu et al. Socially-Aware Self-supervised Tri-Training for Recommendation, KDD'21.
BUIR Lee et al. Bootstrapping User and Item Representations for One-Class Collaborative Filtering, SIGIR'21.

Related Datasets

   
Data Set Basic Meta User Context
Users Items Ratings (Scale) Density Users Links (Type)
Ciao [1] 7,375 105,114 284,086 [1, 5] 0.0365% 7,375 111,781 Trust
Epinions [2] 40,163 139,738 664,824 [1, 5] 0.0118% 49,289 487,183 Trust
Douban [3] 2,848 39,586 894,887 [1, 5] 0.794% 2,848 35,770 Trust
LastFM [4] 1,892 17,632 92,834 implicit 0.27% 1,892 25,434 Trust
Yelp [5] 19,539 21,266 450,884 implicit 0.11% 19,539 864,157 Trust
Amazon-Book [6] 52,463 91,599 2,984,108 implicit 0.11% - - -

Reference

[1]. Tang, J., Gao, H., Liu, H.: mtrust:discerning multi-faceted trust in a connected world. In: International Conference on Web Search and Web Data Mining, WSDM 2012, Seattle, Wa, Usa, February. pp. 93–102 (2012)

[2]. Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the 2007 ACM conference on Recommender systems. pp. 17–24. ACM (2007)

[3]. G. Zhao, X. Qian, and X. Xie, “User-service rating prediction by exploring social users’ rating behaviors,” IEEE Transactions on Multimedia, vol. 18, no. 3, pp. 496–506, 2016.

[4]. Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. 2nd Workshop on Information Heterogeneity and Fusion in Recom- mender Systems (HetRec 2011). In Proceedings of the 5th ACM conference on Recommender systems (RecSys 2011). ACM, New York, NY, USA

[5]. Yu et al. Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation, WWW'21.

[6]. He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation, SIGIR'20.

Acknowledgment

This project is supported by the Responsible Big Data Intelligence Lab (RBDI) at the school of ITEE, University of Queensland, and Chongqing University.

If our project is helpful to you, please cite one of these papers.
@inproceedings{yu2018adaptive,
title={Adaptive implicit friends identification over heterogeneous network for social recommendation},
author={Yu, Junliang and Gao, Min and Li, Jundong and Yin, Hongzhi and Liu, Huan},
booktitle={Proceedings of the 27th ACM International Conference on Information and Knowledge Management},
pages={357--366},
year={2018},
organization={ACM}
}

@inproceedings{yu2021self,
title={Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation},
author={Yu, Junliang and Yin, Hongzhi and Li, Jundong and Wang, Qinyong and Hung, Nguyen Quoc Viet and Zhang, Xiangliang},
booktitle={Proceedings of the Web Conference 2021},
pages={413--424},
year={2021}
}

Owner
Yu
Long live idealism!
Yu
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022