QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Overview

logo

GitHub last commit

Introduction

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented. QRec has a lightweight architecture and provides user-friendly interfaces. It can facilitate model implementation and evaluation.
Founder and principal contributor: @Coder-Yu
Other contributors: @DouTong @Niki666 @HuXiLiFeng @BigPowerZ @flyxu
Supported by: @AIhongzhi (A/Prof. Hongzhi Yin, UQ), @mingaoo (A/Prof. Min Gao, CQU)

What's New

12/10/2021 - BUIR proposed in SIGIR'21 paper has been added.
30/07/2021 - We have transplanted QRec from py2 to py3.
07/06/2021 - SEPT proposed in our KDD'21 paper has been added.
16/05/2021 - SGL proposed in SIGIR'21 paper has been added.
16/01/2021 - MHCN proposed in our WWW'21 paper has been added.
22/09/2020 - DiffNet proposed in SIGIR'19 has been added.
19/09/2020 - DHCF proposed in KDD'20 has been added.
29/07/2020 - ESRF proposed in my TKDE paper has been added.
23/07/2020 - LightGCN proposed in SIGIR'20 has been added.
17/09/2019 - NGCF proposed in SIGIR'19 has been added.
13/08/2019 - RSGAN proposed in ICDM'19 has been added.
09/08/2019 - Our paper is accepted as full research paper by ICDM'19.
20/02/2019 - IRGAN proposed in SIGIR'17 has been added.
12/02/2019 - CFGAN proposed in CIKM'18 has been added.

Architecture

QRec Architecture

Workflow

QRec Architecture

Features

  • Cross-platform: QRec can be easily deployed and executed in any platforms, including MS Windows, Linux and Mac OS.
  • Fast execution: QRec is based on Numpy, Tensorflow and some lightweight structures, which make it run fast.
  • Easy configuration: QRec configs recommenders with a configuration file and provides multiple evaluation protocols.
  • Easy expansion: QRec provides a set of well-designed recommendation interfaces by which new algorithms can be easily implemented.

Requirements

  • gensim==4.1.2
  • joblib==1.1.0
  • mkl==2022.0.0
  • mkl_service==2.4.0
  • networkx==2.6.2
  • numba==0.53.1
  • numpy==1.20.3
  • scipy==1.6.2
  • tensorflow==1.14.0

Usage

There are two ways to run the recommendation models in QRec:

  • 1.Configure the xx.conf file in the directory named config. (xx is the name of the model you want to run)
  • 2.Run main.py.

Or

  • Follow the codes in snippet.py.

For more details, we refer you to the handbook of QRec.

Configuration

Essential Options

Entry Example Description
ratings D:/MovieLens/100K.txt Set the file path of the dataset. Format: each row separated by empty, tab or comma symbol.
social D:/MovieLens/trusts.txt Set the file path of the social dataset. Format: each row separated by empty, tab or comma symbol.
ratings.setup -columns 0 1 2 -columns: (user, item, rating) columns of rating data are used.
social.setup -columns 0 1 2 -columns: (trustor, trustee, weight) columns of social data are used.
mode.name UserKNN/ItemKNN/SlopeOne/etc. name of the recommendation model.
evaluation.setup -testSet ../dataset/testset.txt Main option: -testSet, -ap, -cv (choose one of them)
-testSet path/to/test/file (need to specify the test set manually)
-ap ratio (ap means that the ratings are automatically partitioned into training set and test set, the number is the ratio of the test set. e.g. -ap 0.2)
-cv k (-cv means cross validation, k is the number of the fold. e.g. -cv 5)
-predict path/to/user list/file (predict for a given list of users without evaluation; need to mannually specify the user list file (each line presents a user))
Secondary option:-b, -p, -cold, -tf, -val (multiple choices)
-val ratio (model test would be conducted on the validation set which is generated by randomly sampling the training dataset with the given ratio.)
-b thres (binarizing the rating values. Ratings equal or greater than thres will be changed into 1, and ratings lower than thres will be left out. e.g. -b 3.0)
-p (if this option is added, the cross validation wll be executed parallelly, otherwise executed one by one)
-tf (model training will be conducted on TensorFlow (only applicable and needed for shallow models))
-cold thres (evaluation on cold-start users; users in the training set with rated items more than thres will be removed from the test set)
item.ranking off -topN -1 Main option: whether to do item ranking
-topN N1,N2,N3...: the length of the recommendation list. *QRec can generate multiple evaluation results for different N at the same time
output.setup on -dir ./Results/ Main option: whether to output recommendation results
-dir path: the directory path of output results.

Memory-based Options

similarity pcc/cos Set the similarity method to use. Options: PCC, COS;
num.neighbors 30 Set the number of neighbors used for KNN-based algorithms such as UserKNN, ItemKNN.

Model-based Options

num.factors 5/10/20/number Set the number of latent factors
num.max.epoch 100/200/number Set the maximum number of epoch for iterative recommendation algorithms.
learnRate -init 0.01 -max 1 -init initial learning rate for iterative recommendation algorithms;
-max: maximum learning rate (default 1);
reg.lambda -u 0.05 -i 0.05 -b 0.1 -s 0.1 -u: user regularizaiton; -i: item regularization; -b: bias regularizaiton; -s: social regularization

Implement Your Model

  • 1.Make your new algorithm generalize the proper base class.
  • 2.Reimplement some of the following functions as needed.
          - readConfiguration()
          - printAlgorConfig()
          - initModel()
          - trainModel()
          - saveModel()
          - loadModel()
          - predictForRanking()
          - predict()

For more details, we refer you to the handbook of QRec.

Implemented Algorithms

       
Rating prediction Paper
SlopeOne Lemire and Maclachlan, Slope One Predictors for Online Rating-Based Collaborative Filtering, SDM'05.
PMF Salakhutdinov and Mnih, Probabilistic Matrix Factorization, NIPS'08.
SoRec Ma et al., SoRec: Social Recommendation Using Probabilistic Matrix Factorization, SIGIR'08.
SVD++ Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model, SIGKDD'08.
RSTE Ma et al., Learning to Recommend with Social Trust Ensemble, SIGIR'09.
SVD Y. Koren, Collaborative Filtering with Temporal Dynamics, SIGKDD'09.
SocialMF Jamali and Ester, A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks, RecSys'10.
EE Khoshneshin et al., Collaborative Filtering via Euclidean Embedding, RecSys'10.
SoReg Ma et al., Recommender systems with social regularization, WSDM'11.
LOCABAL Tang, Jiliang, et al. Exploiting local and global social context for recommendation, AAAI'13.
SREE Li et al., Social Recommendation Using Euclidean embedding, IJCNN'17.
CUNE-MF Zhang et al., Collaborative User Network Embedding for Social Recommender Systems, SDM'17.

                       
Item Ranking Paper
BPR Rendle et al., BPR: Bayesian Personalized Ranking from Implicit Feedback, UAI'09.
WRMF Yifan Hu et al.Collaborative Filtering for Implicit Feedback Datasets, KDD'09.
SBPR Zhao et al., Leveraing Social Connections to Improve Personalized Ranking for Collaborative Filtering, CIKM'14
ExpoMF Liang et al., Modeling User Exposure in Recommendation, WWW''16.
CoFactor Liang et al., Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence, RecSys'16.
TBPR Wang et al. Social Recommendation with Strong and Weak Ties, CIKM'16'.
CDAE Wu et al., Collaborative Denoising Auto-Encoders for Top-N Recommender Systems, WSDM'16'.
DMF Xue et al., Deep Matrix Factorization Models for Recommender Systems, IJCAI'17'.
NeuMF He et al. Neural Collaborative Filtering, WWW'17.
CUNE-BPR Zhang et al., Collaborative User Network Embedding for Social Recommender Systems, SDM'17'.
IRGAN Wang et al., IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models, SIGIR'17'.
SERec Wang et al., Collaborative Filtering with Social Exposure: A Modular Approach to Social Recommendation, AAAI'18'.
APR He et al., Adversarial Personalized Ranking for Recommendation, SIGIR'18'.
IF-BPR Yu et al. Adaptive Implicit Friends Identification over Heterogeneous Network for Social Recommendation, CIKM'18'.
CFGAN Chae et al. CFGAN: A Generic Collaborative Filtering Framework based on Generative Adversarial Networks, CIKM'18.
NGCF Wang et al. Neural Graph Collaborative Filtering, SIGIR'19'.
DiffNet Wu et al. A Neural Influence Diffusion Model for Social Recommendation, SIGIR'19'.
RSGAN Yu et al. Generating Reliable Friends via Adversarial Learning to Improve Social Recommendation, ICDM'19'.
LightGCN He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation, SIGIR'20.
DHCF Ji et al. Dual Channel Hypergraph Collaborative Filtering, KDD'20.
ESRF Yu et al. Enhancing Social Recommendation with Adversarial Graph Convlutional Networks, TKDE'20.
MHCN Yu et al. Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation, WWW'21.
SGL Wu et al. Self-supervised Graph Learning for Recommendation, SIGIR'21.
SEPT Yu et al. Socially-Aware Self-supervised Tri-Training for Recommendation, KDD'21.
BUIR Lee et al. Bootstrapping User and Item Representations for One-Class Collaborative Filtering, SIGIR'21.

Related Datasets

   
Data Set Basic Meta User Context
Users Items Ratings (Scale) Density Users Links (Type)
Ciao [1] 7,375 105,114 284,086 [1, 5] 0.0365% 7,375 111,781 Trust
Epinions [2] 40,163 139,738 664,824 [1, 5] 0.0118% 49,289 487,183 Trust
Douban [3] 2,848 39,586 894,887 [1, 5] 0.794% 2,848 35,770 Trust
LastFM [4] 1,892 17,632 92,834 implicit 0.27% 1,892 25,434 Trust
Yelp [5] 19,539 21,266 450,884 implicit 0.11% 19,539 864,157 Trust
Amazon-Book [6] 52,463 91,599 2,984,108 implicit 0.11% - - -

Reference

[1]. Tang, J., Gao, H., Liu, H.: mtrust:discerning multi-faceted trust in a connected world. In: International Conference on Web Search and Web Data Mining, WSDM 2012, Seattle, Wa, Usa, February. pp. 93–102 (2012)

[2]. Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the 2007 ACM conference on Recommender systems. pp. 17–24. ACM (2007)

[3]. G. Zhao, X. Qian, and X. Xie, “User-service rating prediction by exploring social users’ rating behaviors,” IEEE Transactions on Multimedia, vol. 18, no. 3, pp. 496–506, 2016.

[4]. Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. 2nd Workshop on Information Heterogeneity and Fusion in Recom- mender Systems (HetRec 2011). In Proceedings of the 5th ACM conference on Recommender systems (RecSys 2011). ACM, New York, NY, USA

[5]. Yu et al. Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation, WWW'21.

[6]. He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation, SIGIR'20.

Acknowledgment

This project is supported by the Responsible Big Data Intelligence Lab (RBDI) at the school of ITEE, University of Queensland, and Chongqing University.

If our project is helpful to you, please cite one of these papers.
@inproceedings{yu2018adaptive,
title={Adaptive implicit friends identification over heterogeneous network for social recommendation},
author={Yu, Junliang and Gao, Min and Li, Jundong and Yin, Hongzhi and Liu, Huan},
booktitle={Proceedings of the 27th ACM International Conference on Information and Knowledge Management},
pages={357--366},
year={2018},
organization={ACM}
}

@inproceedings{yu2021self,
title={Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation},
author={Yu, Junliang and Yin, Hongzhi and Li, Jundong and Wang, Qinyong and Hung, Nguyen Quoc Viet and Zhang, Xiangliang},
booktitle={Proceedings of the Web Conference 2021},
pages={413--424},
year={2021}
}

Owner
Yu
Long live idealism!
Yu
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Code accompanying our NeurIPS 2021 traffic4cast challenge

Traffic forecasting on traffic movie snippets This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the c

Nina Wiedemann 2 Aug 09, 2022
🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022