Rasterize with the least efforts for researchers.

Related tags

Deep Learningutils3d
Overview

utils3d

Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL.

It could be helpful when you want to:

  • rasterize a simple mesh but don't want get into OpenGL chores
  • warp an image as a 2D or 3D mesh (eg. optical-flow-based warping)
  • render a optical flow image

This tool sets could help you achieve them in a few lines.

It is NOT what you are looking for when you want:

  • a differentiable rasterization tool. You should turn to nvdiffrast, pytorch3d, SoftRas etc.
  • a real-time graphics application. Though as fast as it could be, the expected performance of util3d rasterization is to be around 20 ~ 100 ms. It is not expected to fully make use of GPU performance because of the overhead of buffering every time calling rasterzation. If the best performance withou any overhead is demanded, You will have to manage buffer objects like VBO, VAO and FBO. I personally recommand moderngl as an alternative python OpenGL library.

Install

The folder of repo is a package. Clone the repo.

git clone https://github.com/EasternJournalist/utils3d.git 

Install requirements

pip install numpy
pip install moderngl

Usage

At first, one step to initialize a OpenGL context. It depends on your platform and machine.

import utils3d

ctx = utils3d.Context(standalone=True)                 # Recommanded for a standalone python program. The machine must have a display device (virtual display like X11 is also okay)
ctx = utils3d.Context(standalone=False)                 # Recommanded for a nested python script running in a windowed opengl program to share the OpenGL context, eg. Blender.
ctx = utils3d.Context(standalone=True, backend='egl')   # Recommanded for a program running on a headless linux server (without any display device)

The functions the most probably you would like to use

  • ctx.rasterize(...): rasterize trianglular mesh with vertex attributes.
  • ctx.texture(uv, texture): sample texture by a UV image. Exactly the same as grid sample, but an OpenGL shader implementation.
  • ctx.rasterize_texture(...): rasterize trianglular mesh with texture

Some other functions that could be helpful for certain purposes

  • ctx.render_flow(...): render an optical flow image given source and target geometry
  • ctx.warp_image_3d(image, pixel_positions, transform_matrix)
  • ctx.warp_image_by_flow(image, flow, occlusion_mask)

Useful tool functions

  • image_uv(width, height) : return a numpy array of shape [height, width, 2], the image uv of each pixel.
  • image_mesh(width, height, mask=None) : return a quad mesh connecting all neighboring pixels as vertices. A boolean array of shape [height, width] or [height, width, 1] mask is optional. If a mask is provided, only pixels where mask value is True are involved in te mesh.
  • triangulate(faces) : convert a polygonal mesh into a triangular mesh (naively).
  • perspective_from_image()
  • perspective_from_fov_xy()
  • projection(vertices, model_matrix=None, view_matrix=None, projection_matrix=None): project 3D points to 2D screen space following the OpenGL convention (except for using row major matrix). This also gives a insight of how the projection works when you have confusion about the coordinate system.
  • compute_face_normal(vertices, faces)
  • compute_vertex_normal(vertices, faces)
Owner
Ruicheng Wang
Microsoft Research Asia Intern
Ruicheng Wang
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022