Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Related tags

Deep LearningATVGnet
Overview

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu.

University of Rochester.

Table of Contents

  1. Introduction
  2. Citation
  3. Running
  4. Model
  5. Results
  6. Disclaimer and known issues

Introduction

This repository contains the original models (AT-net, VG-net) described in the paper Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss. The demo video is avaliable at https://youtu.be/eH7h_bDRX2Q. This code can be applied directly in LRW and GRID. The outputs from the model are visualized here: the first one is the synthesized landmark from ATnet, the rest of them are attention, motion map and final results from VGnet.

model model

Citation

If you use any codes, models or the ideas from this repo in your research, please cite:

@inproceedings{chen2019hierarchical,
  title={Hierarchical cross-modal talking face generation with dynamic pixel-wise loss},
  author={Chen, Lele and Maddox, Ross K and Duan, Zhiyao and Xu, Chenliang},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={7832--7841},
  year={2019}
}

Running

  1. This code is tested under Python 2.7. The model we provided is trained on LRW. However, it works fine on GRID,VOXCELB and other datasets. You can directly compare this model on other dataset with your own model. We treat this as fair comparison.

  2. Pytorch environment:Pytorch 0.4.1. (conda install pytorch=0.4.1 torchvision cuda90 -c pytorch)

  3. Install requirements.txt (pip install -r requirement.txt)

  4. Download the pretrained ATnet and VGnet weights at google drive. Put the weights under model folder.

  5. Run the demo code: python demo.py

    • -device_ids: gpu id
    • -cuda: using cuda or not
    • -vg_model: pretrained VGnet weight
    • -at_model: pretrained ATnet weight
    • -lstm: use lstm or not
    • -p: input example image
    • -i: input audio file
    • -lstm: use lstm or not
    • -sample_dir: folder to save the outputs
    • ...
  6. Download and unzip the training data from LRW

  7. Preprocess the data (Extract landmark and crop the image by dlib).

  8. Train the ATnet model: python atnet.py

    • -device_ids: gpu id
    • -batch_size: batch size
    • -model_dir: folder to save weights
    • -lstm: use lstm or not
    • -sample_dir: folder to save visualized images during training
    • ...
  9. Test the model: python atnet_test.py

    • -device_ids: gpu id
    • -batch_size: batch size
    • -model_name: pretrained weights
    • -sample_dir: folder to save the outputs
    • -lstm: use lstm or not
    • ...
  10. Train the VGnet: python vgnet.py

    • -device_ids: gpu id
    • -batch_size: batch size
    • -model_dir: folder to save weights
    • -sample_dir: folder to save visualized images during training
    • ...
  11. Test the VGnet: python vgnet_test.py

    • -device_ids: gpu id
    • -batch_size: batch size
    • -model_name: pretrained weights
    • -sample_dir: folder to save the outputs
    • ...

Model

  1. Overall ATVGnet model

  2. Regresssion based discriminator network

    model

Results

  1. Result visualization on different datasets:

    visualization

  2. Reuslt compared with other SOTA methods:

    visualization

  3. The studies on image robustness respective with landmark accuracy:

    visualization

  4. Quantitative results:

    visualization

Disclaimer and known issues

  1. These codes are implmented in Pytorch.
  2. In this paper, we train LRW and GRID seperately.
  3. The model are sensitive to input images. Please use the correct preprocessing code.
  4. I didn't finish the data processing code yet. I will release it soon. But you can try the model and replace with your own image.
  5. If you want to train these models using this version of pytorch without modifications, please notice that:
    • You need at lest 12 GB GPU memory.
    • There might be some other untested issues.
  6. There is another intresting and useful research on audio to landmark genration. Please check it out at https://github.com/eeskimez/Talking-Face-Landmarks-from-Speech.

Todos

  • Release training data

License

MIT

Owner
Lele Chen
I am a Ph.D candidate in University of Rochester supervised by Prof. Chenling Xu.
Lele Chen
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022