Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Overview

Visual Interestingness


Install Dependencies

This version is tested in PyTorch 1.7

  pip3 install -r requirements.txt

Long-term Learning

  • You may skip this step, if you download the pre-trained vgg16.pt into folder "saves".

  • Download coco dataset into folder [data-root]:

    bash download_coco.sh [data-root] # replace [data-root] by your desired location
    

    The dataset will be look like:

    data-root
    ├──coco
       ├── annotations
       │   ├── annotations_trainval2017
       │   └── image_info_test2017
       └── images
           ├── test2017
           ├── train2017
           └── val2017
    
  • Run

    python3 longterm.py --data-root [data-root] --model-save saves/vgg16.pt
    
    # This requires a long time for training on single GPU.
    # Create a folder "saves" manually and a model named "ae.pt" will be saved.
    

Short-term Learning

  • Dowload the SubT front camera data (SubTF) and put into folder "data-root", so that it looks like:

    data-root
    ├──SubTF
       ├── 0817-ugv0-tunnel0
       ├── 0817-ugv1-tunnel0
       ├── 0818-ugv0-tunnel1
       ├── 0818-ugv1-tunnel1
       ├── 0820-ugv0-tunnel1
       ├── 0821-ugv0-tunnel0
       ├── 0821-ugv1-tunnel0
       ├── ground-truth
       └── train
    
  • Run

    python3 shortterm.py --data-root [data-root] --model-save saves/vgg16.pt --dataset SubTF --memory-size 100 --save-flag n100usage
    
    # This will read the previous model "ae.pt".
    # A new model "ae.pt.SubTF.n1000.mse" will be generated.
    
  • You may skip this step, if you download the pre-trained vgg16.pt.SubTF.n100usage.mse into folder "saves".

On-line Learning

  • Run

      python3 online.py --data-root [data-root] --model-save saves/vgg16.pt.SubTF.n100usage.mse --dataset SubTF --test-data 0 --save-flag n100usage
    
      # --test-data The sequence ID in the dataset SubTF, [0-6] is avaiable
      # This will read the trained model "vgg16.pt.SubTF.n100usage.mse" from short-term learning.
    
  • Alternatively, you may test all sequences by running

      bash test.sh
    
  • This will generate results files in folder "results".

  • You may skip this step, if you download our generated results.


Evaluation

  • We follow the SubT tutorial for evaluation, simply run

    python performance.py --data-root [data-root] --save-flag n100usage --category normal --delta 1 2 3
    # mean accuracy: [0.64455275 0.8368784  0.92165116 0.95906876]
    
    python performance.py --data-root [data-root] --save-flag n100usage --category difficult --delta 1 2 4
    # mean accuracy: [0.42088688 0.57836163 0.67878168 0.75491805]
    
  • This will generate performance figures and create data curves for two categories in folder "performance".


Citation

      @inproceedings{wang2020visual,
        title={Visual memorability for robotic interestingness via unsupervised online learning},
        author={Wang, Chen and Wang, Wenshan and Qiu, Yuheng and Hu, Yafei and Scherer, Sebastian},
        booktitle={European Conference on Computer Vision (ECCV)},
        year={2020},
        organization={Springer}
      }
      
      @article{wang2021unsupervised,
        title={Unsupervised Online Learning for Robotic Interestingness with Visual Memory},
        author={Wang, Chen and  Qiu, Yuheng and Wang, Wenshan and Hu, Yafei anad Kim, Seungchan and Scherer, Sebastian},
        journal={IEEE Transactions on Robotics (T-RO)},
        year={2021},
        publisher={IEEE}
      }

You may watch the following video to catch the idea of this work.

You might also like...
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Code for ECCV 2020 paper
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

SNE-RoadSeg in PyTorch, ECCV 2020
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

[ECCV 2020] Gradient-Induced Co-Saliency Detection
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Code for Towards Streaming Perception (ECCV 2020) :car:
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Comments
  • Variable

    Variable

    https://github.com/wang-chen/interestingness/blob/6994d50bd47d14b617f34f5c36c1beaba03acfdc/test_interest.py#L94

    I think using Variable() will just return a tensor object in the new pytorch version.

    opened by haleqiu 2
Owner
Chen Wang
I am engaged in delivering simple and efficient source code.
Chen Wang
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022