Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

Overview

C-CNN: Contourlet Convolutional Neural Networks

This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch, Numpy and Cython.

For texture classification, spectral analysis is traditionally employed in the frequency domain. Recent studies have shown the potential of convolutional neural networks (CNNs) when dealing with the texture classification task in the spatial domain. This network combines both approaches in different domains for more abundant information and proposed a novel network architecture named contourlet CNN (C-CNN). This network aims to learn sparse and effective feature representations for images. First, the contourlet transform is applied to get the spectral features from an image. Second, the spatial-spectral feature fusion strategy is designed to incorporate the spectral features into CNN architecture. Third, the statistical features are integrated into the network by the statistical feature fusion. Finally, the results are obtained by classifying the fusion features.

Installation

The code is tested in a Conda environment setup. First, install PyTorch, torchvision and the appropriate version of cudatoolkit. The code is tested with torch=1.9.1 and torchvision=0.10.1.

conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c conda-forge

Next, install the other supporting packages from the requirements.txt provided.

pip install -r requirements.txt

You should be able to run the notebooks provided after the setup is done.

Code and Notebooks

In this repo, two Jupyter notebooks is provided.

  1. 01_Visualize_Contourlet_Transform.ipynb - Visualize the contourlet transform output of a sample image, as described in the paper.

  1. 02_Training_DEMO.ipynb - A minimal example of training a Contourlet-CNN on the CIFAR-10 dataset.

The pycontourlet folder contains a modified version of the pycontourlet package from mazayux. Unlike the original, this version works on Python 3.

The contourlet_cnn.py contains the class definition for the Contourlet-CNN network.

Network Variants

The variants of the Contourlet-CNN model. From left to right, each variant is an incremental version of the previous variant, as such in an abalation study in the original paper.

  • "origin" - The 'origin' splices the elongated decomposed images into its corresponding sizes since the contourlet has elongated supports. No SSF features is concatenated to the features in FC2 layer.
  • "SSFF" - Instead of splicing, the 'SSFF' (spatial–spectral feature fusion) via contourlet directly resize the elongated decomposed images into its corresponding sizes. No SSF features is concatenated to the features in FC2 layer.
  • "SSF" - In addition to 'SSFF', the 'SFF' (statistical feature fusion) that denotes the additional texture features of decomposed images, are concatenated to the features in FC2 layer. The mean and variance of each subbands are chosen as the texture features of decomposed images.

In the original paper, the images are converted to grayscale image before feeding into the network. This implementation supports both grayscale images and images with full RGB channels. By setting the spec_type parameter, For full RGB channels, use "all", while to use grayscale images, use "avg".

Examples:

# Uses all RGB channel for contourlet transform, the output are resized, and the statistical
# features are concatenated to the FC layer. This is the recommended variant.
model = ContourletCNN(input_dim=(3, 224, 224), num_classes=10, variant="SSF", spec_type="all")

# Uses only the grayscale channel for contourlet transform, the output are resized, and the 
# statistical features are concatenated to the FC layer.
model = ContourletCNN(input_dim=(3, 224, 224), num_classes=10, variant="SSF", spec_type="avg")

# Uses all RGB channel for contourlet transform, the output are spliced
model = ContourletCNN(input_dim=(3, 224, 224), num_classes=10, variant="origin", spec_type="all")

# Uses all RGB channel for contourlet transform, the output are resized
model = ContourletCNN(input_dim=(3, 224, 224), num_classes=10, variant="SSSF", spec_type="all")
Owner
Goh Kun Shun (KHUN)
Computer Science Major Specializing in Data Science, MMU, Cyberjaya. Currently working as a machine learning engineer,
Goh Kun Shun (KHUN)
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022