U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

Overview

U-Net Implementation

By Christopher Ley

This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

This data set is a Binary Segmentation exercise of ~400 test images of cars from various angles such as those shown here:

Initial implementation for Binary Segmentation

The implementation performs almost as the winners of the competition (Dice: 0.9926 vs 0.99733) after only 5 epoch and we would expect the results to be as good as the winners using this architecture with more training and a little tweaking of the training hyper-parameters.

Here are the scores for training over 5 epochs by running:

(DeepLearning): python3 train.py

Training Results

0%|          | 0/540 [00:00<?, ?it/s]Accuracy: 103298971/467927040 = 22.08%
Dice score: 0.36127230525016785
100%|██████████| 540/540 [05:59<00:00,  1.50it/s, loss=0.0949]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_12:39_epoch_0.pth.tar
Accuracy: 460498379/467927040 = 98.41%
Dice score: 0.9652246236801147
100%|██████████| 540/540 [05:59<00:00,  1.50it/s, loss=0.0469]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_12:48_epoch_1.pth.tar
Accuracy: 461809183/467927040 = 98.69%
Dice score: 0.9711439609527588
100%|██████████| 540/540 [05:56<00:00,  1.51it/s, loss=0.0283]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_12:56_epoch_2.pth.tar
Accuracy: 465675737/467927040 = 99.52%
Dice score: 0.9891990423202515
100%|██████████| 540/540 [06:00<00:00,  1.50it/s, loss=0.0194]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_13:04_epoch_3.pth.tar
Accuracy: 465397979/467927040 = 99.46%
Dice score: 0.9878408908843994
100%|██████████| 540/540 [06:00<00:00,  1.50it/s, loss=0.0142]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_13:12_epoch_4.pth.tar
Accuracy: 466399501/467927040 = 99.67%
Dice score: 0.9926225543022156

And an example of the output vs the ground truth of the validation set, I removed whole makes for the validation set, all 16 angles, the network had never seen this particular make from any angle.

Ground Truth

Prediction

Although limited in scope (binary segmentation for only cars), this architecture performs well with multiclass segmentation, I extended this to apply segmentation to the NYUv2 which is a multiclass objective, with little modification to the above code.

I will clean this up and upload the results and modifications soon!

Owner
Christopher Ley
Artificial Intelligence Researcher
Christopher Ley
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
PyTorch trainer and model for Sequence Classification

PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file

NhanTieu 2 Dec 09, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022