U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

Overview

U-Net Implementation

By Christopher Ley

This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

This data set is a Binary Segmentation exercise of ~400 test images of cars from various angles such as those shown here:

Initial implementation for Binary Segmentation

The implementation performs almost as the winners of the competition (Dice: 0.9926 vs 0.99733) after only 5 epoch and we would expect the results to be as good as the winners using this architecture with more training and a little tweaking of the training hyper-parameters.

Here are the scores for training over 5 epochs by running:

(DeepLearning): python3 train.py

Training Results

0%|          | 0/540 [00:00<?, ?it/s]Accuracy: 103298971/467927040 = 22.08%
Dice score: 0.36127230525016785
100%|██████████| 540/540 [05:59<00:00,  1.50it/s, loss=0.0949]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_12:39_epoch_0.pth.tar
Accuracy: 460498379/467927040 = 98.41%
Dice score: 0.9652246236801147
100%|██████████| 540/540 [05:59<00:00,  1.50it/s, loss=0.0469]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_12:48_epoch_1.pth.tar
Accuracy: 461809183/467927040 = 98.69%
Dice score: 0.9711439609527588
100%|██████████| 540/540 [05:56<00:00,  1.51it/s, loss=0.0283]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_12:56_epoch_2.pth.tar
Accuracy: 465675737/467927040 = 99.52%
Dice score: 0.9891990423202515
100%|██████████| 540/540 [06:00<00:00,  1.50it/s, loss=0.0194]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_13:04_epoch_3.pth.tar
Accuracy: 465397979/467927040 = 99.46%
Dice score: 0.9878408908843994
100%|██████████| 540/540 [06:00<00:00,  1.50it/s, loss=0.0142]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_13:12_epoch_4.pth.tar
Accuracy: 466399501/467927040 = 99.67%
Dice score: 0.9926225543022156

And an example of the output vs the ground truth of the validation set, I removed whole makes for the validation set, all 16 angles, the network had never seen this particular make from any angle.

Ground Truth

Prediction

Although limited in scope (binary segmentation for only cars), this architecture performs well with multiclass segmentation, I extended this to apply segmentation to the NYUv2 which is a multiclass objective, with little modification to the above code.

I will clean this up and upload the results and modifications soon!

Owner
Christopher Ley
Artificial Intelligence Researcher
Christopher Ley
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
Course materials for Fall 2021 "CIS6930 Topics in Computing for Data Science" at New College of Florida

Fall 2021 CIS6930 Topics in Computing for Data Science This repository hosts course materials used for a 13-week course "CIS6930 Topics in Computing f

Yoshi Suhara 101 Nov 30, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022