Contenido del curso Bases de datos del DCC PUC versión 2021-2

Overview

IIC2413 - Bases de Datos

Tabla de contenidos


Equipo

Profesores

Nombre Sección Email
Andrés Cadiz 1 [email protected]
Raimundo Herrera 2 [email protected]
Matías Toro 3 [email protected]

Cuerpo de ayudantes

Jefes

Nombre Rol Email
Valentina Álvarez Cátedra [email protected]
Andrés Pincheira Proyecto [email protected]

Ayudantes

WIP


Contenidos

Semana Contenido clase Ayudantía
#1 Introducción
#2 Modelo relacional, Álgebra relacional Ayudantía 1 (C1)
#3 SQL Ayudantía 2 (Servidor)
#4 SQL Avanzado
#5 Diagramas ER, Llaves foráneas
#6 Dependencias, Anomalías, Formas normales Ayudantía 3 (PHP)
#7 Storage, Indexing
#8 Evaluación de consultas Ayudantía 4 (C2)
#9 Lógica en la BD
#10 Semana de Receso
#11 Programación Ayudantía (Proyecto)
#12 Transacciones y recuperación de fallas
#13 Data Science y SQL
#14 NoSQL
#15 Privacidad
#16 Data Engineering
#17 No hay clases

Calendario Evaluaciones

Controles

Fecha Evaluación
01/09 Enunciado Control 1
03/09 Entrega Control 1
06/10 Enunciado Control 2
08/10 Entrega Control 2
03/11 Enunciado Control Bonus
05/11 Entrega Control Bonus
24/11 Enunciado Control 3
26/11 Entrega Control 3
13/12 Examen

Proyecto

Fecha Evaluación
01/09 Enunciado Entrega 1
16/09 Entrega 1
22/09 Enunciado Entrega 2
15/10 Entrega 2
3/11 Enunciado Entrega 3
3/12 Entrega 3

Evaluaciones

La nota de controles y exámenes (NCE) corresponde al promedio de los controles y el examen. En otras palabras:

  • NCE = (C1 + C2 + C3 + Ex ) / 4

El control bonus puede reemplazar su peor control, pero no el examen. Y se podrán eximir del examen los alumnos que tengan un promedio entre los 3 controles > 5,5.

La nota del proyecto (NP) corresponde al promedio ponderado de todas las entregas del proyecto. La ponderación es:

Proyecto Porcentaje
Entrega 1 20%
Entrega 2 40%
Entrega 3 40%

Para aprobar el ramo, el alumno debe cumplir que NCE y NP sean >= 3,95. En ese caso, la nota final se calcula como NF = (0,5 NCE + 0,5 NP). En caso contrario, NF = mín{NCE , NP}.


Resumen de notas


Foro

La página de Issues se utilizará como foro para preguntas. Notar que las etiquetas ya se encuentran definidas. Este es el único canal oficial para formular preguntas.

Tanto al publicar como comentar, debes atenerte a las normas del curso. Además, debes utilizar Markdown cuando sea necesario. Por ejemplo, cuando se necesita mostrar código o mensajes de error.

Una vez resuelto el problema, da las gracias y cierra el issue.

Importante: El equipo docente puede tardar más de 24 horas en contestar una issue, aunque normalmente el tiempo de respuesta debería ser menor. Por lo mismo, se recomienda no publicar issues el mismo día de alguna entrega o interrogación.


Política de integridad académica

Los alumnos de la Escuela de Ingeniería de la Pontificia Universidad Católica de Chile deben mantener un comportamiento acorde a la Declaración de Principios de la Universidad. En particular, se espera que mantengan altos estándares de honestidad académica. Cualquier acto deshonesto o fraude académico está prohibido; los alumnos que incurran en este tipo de acciones se exponen a un Procedimiento Sumario. Es responsabilidad de cada alumno conocer y respetar el documento sobre Integridad Académica publicado por la Dirección de Docencia de la Escuela de Ingeniería (disponible en SIDING).

Específicamente, para los cursos del Departamento de Ciencia de la Computación, rige obligatoriamente la siguiente política de integridad académica. Todo trabajo presentado por un alumno para los efectos de la evaluación de un curso debe ser hecho individualmente por el alumno, sin apoyo en material de terceros. Por trabajo se entiende en general las interrogaciones escritas, las tareas de programación u otras, los trabajos de laboratorio, los proyectos, el examen, entre otros.

En particular, si un alumno copia un trabajo, o si a un alumno se le prueba que compró o intentó comprar un trabajo, obtendrá nota final 1.1 en el curso y se solicitará a la Dirección de Docencia de la Escuela de Ingeniería que no le permita retirar el curso de la carga académica semestral.

Por copia se entiende incluir en el trabajo presentado como propio, partes hechas por otra persona. En caso que corresponda a copia a otros alumnos, la sanción anterior se aplicará a todos los involucrados. En todos los casos, se informará a la Dirección de Docencia de la Escuela de Ingeniería para que tome sanciones adicionales si lo estima conveniente.

Obviamente, está permitido usar material disponible públicamente, por ejemplo, libros o contenidos tomados de Internet, siempre y cuando se incluya la referencia correspondiente.

Lo anterior se entiende como complemento al Reglamento del Alumno de la Pontificia Universidad Católica de Chile. Por ello, es posible pedir a la Universidad la aplicación de sanciones adicionales especificadas en dicho reglamento.

Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022