This repository contains the code and models for the following paper.

Overview

DC-ShadowNet

Introduction

This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised Domain-Classifier Guided Network. (ICCV'2021) Yeying Jin, Aashish Sharma and Robby T. Tan

Abstract

Shadow removal from a single image is generally still an open problem. Most existing learning-based methods use supervised learning and require a large number of paired images (shadow and corresponding non-shadow images) for training. A recent unsupervised method, Mask-ShadowGAN, addresses this limitation. However, it requires a binary mask to represent shadow regions, making it inapplicable to soft shadows. To address the problem, in this paper, we propose an unsupervised domain-classifier guided shadow removal network, DC-ShadowNet. Specifically, we propose to integrate a shadow/shadow-free domain classifier into a generator and its discriminator, enabling them to focus on shadow regions. To train our network, we introduce novel losses based on physics-based shadow-free chromaticity, shadow-robust perceptual features, and boundary smoothness. Moreover, we show that our unsupervised network can be used for test-time training that further improves the results. Our experiments show that all these novel components allow our method to handle soft shadows, and also to perform better on hard shadows both quantitatively and qualitatively than the existing state-of-the-art shadow removal methods.

Overview of the proposed method:

Datasets

  1. SRD (please download train and test from the authors). Extracted Shadow Masks in the SRD Dataset

  2. AISTD

  3. LRSS: Soft Shadow Dataset

  4. ISTD

  5. USR: Unpaired Shadow Removal Dataset

Shadow Removal Results:

  1. SDR Dataset DC-ShadowNet Results, All Results

  1. AISTD Dataset DC-ShadowNet Results, All Results

  2. LRSS Soft Shadow Dataset DC-ShadowNet Results, All Results

  3. ISTD Dataset DC-ShadowNet Results

  4. USR Dataset DC-ShadowNet Results

Evaluation

The default root mean squared error (RMSE) evaluation code used by all methods (including ours) actually computes mean absolute error (MAE).

  1. The faster version MAE evaluation code
  2. The original version MAE evaluation code

1.1 SRD Dataset, set the paths of the shadow removal result and the dataset in demo_srd_release.m and then run it.

Get the following Table 1 in the main paper on the SRD dataset (size: 256x256).

Method Training All Shadow Non-Shadow
DC-ShadowNet Unpaired 4.66 7.70 3.39
Mask-ShadowGAN Unpaired 6.40 11.46 4.29
DSC Paired 4.86 8.81 3.23
DeShadowNet Paired 5.11 3.57 8.82
Gong Prior 12.35 25.43 6.91
Input Image N/A 13.77 37.40 3.96

1.2 AISTD Dataset, set the paths of the shadow removal result and the dataset in demo_aistd_release.m and then run it.

Get the following Table 2 in the main paper on the AISTD dataset (size: 256x256).

Method Training All Shadow Non-Shadow
DC-ShadowNet Unpaired 4.6 10.3 3.5

1.3 LRSS Soft Shadow Dataset, set the paths of the shadow removal result and the dataset in demo_lrss_release.m and then run it.

Get the following Table 3 in the main paper on the LRSS dataset (size: 256x256).

Method Training All
DC-ShadowNet Unpaired 3.48
Input Image N/A 12.26

Pre-trained Model

  1. Download the pre-trained SRD model, put in results/SRD/model/

  2. Download the pre-trained AISTD model, put in results/AISTD/model/

  3. Download the pre-trained ISTD model, put in results/ISTD/model/

  4. Download the pre-trained USR model, put in results/USR/model/

Test

python main_test.py --dataset SRD --datasetpath YOURPATH --phase test

Results: results/SRD/iteration/outputB

Train

  1. Implement the papers On the removal of shadows from images (TPAMI,05) and Recovery of Chromaticity Image Free from Shadows via Illumination Invariance (ICCV,03)

Directory

  1. Download Datasets and run 1, get the Shadow-Free Chromaticity Maps after Illumination Compensation, and put them in the trainC folder, you should see the following directory structure.
${DC-ShadowNet-Hard-and-Soft-Shadow-Removal}
|-- dataset
    |-- SRD
      |-- trainA ## Shadow 
      |-- trainB ## Shadow-free 
      |-- trainC ## Shadow-Free Chromaticity Maps after Illumination Compensation
      |-- testA  ## Shadow 
      |-- testB  ## Shadow-free 
...
  1. python main.py --dataset SRD --phase train

Shadow-Robust Feature

Get the following Figure 5 in the main paper, VGG feature visualization code is in feature_release folder,

python test_VGGfeatures.py

Results: ./results_VGGfeatures/shadow_VGGfeatures/layernumber/imagenumber/visual_featurenumber_RMSE.jpg

Boundary Smoothness Loss

Get the following Figure 8 in the main paper, shadow boundary code is in boundary_smooth folder,

run getRTVdenMask.m

Results: input_softmask_boundary.jpg

Citation

Please kindly cite our paper if you are using our codes:

Owner
AuAgCu
Computer Vision/ Deep Learning
AuAgCu
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022