Adjust Decision Boundary for Class Imbalanced Learning

Overview

Adjusting Decision Boundary for Class Imbalanced Learning

This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting Decision Boundary for Class Imbalanced Learning.

Requirements

  1. NVIDIA docker : Docker image will be pulled from cloud.
  2. CIFAR dataset : The "dataset_path" in run_cifar.sh should be
cifar10/
    data_batch_N
    test_batch
cifar100/
    train
    test

CIFAR datasets are available here.

How to use

Run the shell script.

bash run_cifar.sh

To use Weight Vector Normalization (WVN), use --WVN flag. (It is already in the script.)

Results

  1. Validation error on Long-Tailed CIFAR10
Imbalance 200 100 50 20 10 1
Baseline 35.67 29.71 22.91 16.04 13.26 6.83
Over-sample 32.19 28.27 21.40 15.23 12.24 6.61
Focal 34.71 29.62 23.28 16.77 13.19 6.60
CB 31.11 25.43 20.73 15.64 12.51 6.36
LDAM-DRW 28.09 22.97 17.83 14.53 11.84 6.32
Baseline+RS 27.02 21.36 17.16 13.46 11.86 6.32
WVN+RS 27.23 20.17 16.80 12.76 10.71 6.29
  1. Validation error on Long-Tailed CIFAR100
Imbalance 200 100 50 20 10 1
Baseline 64.21 60.38 55.09 48.93 43.52 29.69
Over-sample 66.39 61.53 56.65 49.03 43.38 29.41
Focal 64.38 61.31 55.68 48.05 44.22 28.52
CB 63.77 60.40 54.68 47.41 42.01 28.39
LDAM-DRW 61.73 57.96 52.54 47.14 41.29 28.85
Baseline+RS 59.59 55.65 51.91 45.09 41.45 29.80
WVN+RS 59.48 55.50 51.80 46.12 41.02 29.22

Notes

This codes use docker image "feidfoe/pytorch:v.2" with pytorch version, '0.4.0a0+0640816'. The image only provides basic libraries such as NumPy or PIL.

WVN is implemented on ResNet architecture only.

Baseline repository

This repository is forked and modified from original repo.

Contact

Byungju Kim ([email protected])

BibTeX for Citation

@ARTICLE{9081988,
  author={B. {Kim} and J. {Kim}},
  journal={IEEE Access}, 
  title={Adjusting Decision Boundary for Class Imbalanced Learning}, 
  year={2020},
  volume={8},
  number={},
  pages={81674-81685},}
Owner
Peyton Byungju Kim
Peyton Byungju Kim
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
Curated list of awesome GAN applications and demo

gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such

Minchul Shin 4.5k Jan 07, 2023
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022