Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

Overview

SinGAN

Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19)

Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

ICCV 2019 Best paper award (Marr prize)

Random samples from a single image

With SinGAN, you can train a generative model from a single natural image, and then generate random samples from the given image, for example:

SinGAN's applications

SinGAN can be also used for a line of image manipulation tasks, for example: This is done by injecting an image to the already trained model. See section 4 in our paper for more details.

Citation

If you use this code for your research, please cite our paper:

@inproceedings{rottshaham2019singan,
  title={SinGAN: Learning a Generative Model from a Single Natural Image},
  author={Rott Shaham, Tamar and Dekel, Tali and Michaeli, Tomer},
  booktitle={Computer Vision (ICCV), IEEE International Conference on},
  year={2019}
}

Code

Install dependencies

python -m pip install -r requirements.txt

This code was tested with python 3.6, torch 1.4

Please note: the code currently only supports torch 1.4 or earlier because of the optimization scheme.

For later torch versions, you may try this repository: https://github.com/kligvasser/SinGAN (results won't necessarily be identical to the official implementation).

Train

To train SinGAN model on your own image, put the desired training image under Input/Images, and run

python main_train.py --input_name <input_file_name>

This will also use the resulting trained model to generate random samples starting from the coarsest scale (n=0).

To run this code on a cpu machine, specify --not_cuda when calling main_train.py

Random samples

To generate random samples from any starting generation scale, please first train SinGAN model on the desired image (as described above), then run

python random_samples.py --input_name <training_image_file_name> --mode random_samples --gen_start_scale <generation start scale number>

pay attention: for using the full model, specify the generation start scale to be 0, to start the generation from the second scale, specify it to be 1, and so on.

Random samples of arbitrary sizes

To generate random samples of arbitrary sizes, please first train SinGAN model on the desired image (as described above), then run

python random_samples.py --input_name <training_image_file_name> --mode random_samples_arbitrary_sizes --scale_h <horizontal scaling factor> --scale_v <vertical scaling factor>

Animation from a single image

To generate short animation from a single image, run

python animation.py --input_name <input_file_name> 

This will automatically start a new training phase with noise padding mode.

Harmonization

To harmonize a pasted object into an image (See example in Fig. 13 in our paper), please first train SinGAN model on the desired background image (as described above), then save the naively pasted reference image and it's binary mask under "Input/Harmonization" (see saved images for an example). Run the command

python harmonization.py --input_name <training_image_file_name> --ref_name <naively_pasted_reference_image_file_name> --harmonization_start_scale <scale to inject>

Please note that different injection scale will produce different harmonization effects. The coarsest injection scale equals 1.

Editing

To edit an image, (See example in Fig. 12 in our paper), please first train SinGAN model on the desired non-edited image (as described above), then save the naive edit as a reference image under "Input/Editing" with a corresponding binary map (see saved images for an example). Run the command

python editing.py --input_name <training_image_file_name> --ref_name <edited_image_file_name> --editing_start_scale <scale to inject>

both the masked and unmasked output will be saved. Here as well, different injection scale will produce different editing effects. The coarsest injection scale equals 1.

Paint to Image

To transfer a paint into a realistic image (See example in Fig. 11 in our paper), please first train SinGAN model on the desired image (as described above), then save your paint under "Input/Paint", and run the command

python paint2image.py --input_name <training_image_file_name> --ref_name <paint_image_file_name> --paint_start_scale <scale to inject>

Here as well, different injection scale will produce different editing effects. The coarsest injection scale equals 1.

Advanced option: Specify quantization_flag to be True, to re-train only the injection level of the model, to get a on a color-quantized version of upsampled generated images from the previous scale. For some images, this might lead to more realistic results.

Super Resolution

To super resolve an image, please run:

python SR.py --input_name <LR_image_file_name>

This will automatically train a SinGAN model correspond to 4x upsampling factor (if not exist already). For different SR factors, please specify it using the parameter --sr_factor when calling the function. SinGAN's results on the BSD100 dataset can be download from the 'Downloads' folder.

Additional Data and Functions

Single Image Fréchet Inception Distance (SIFID score)

To calculate the SIFID between real images and their corresponding fake samples, please run:

python SIFID/sifid_score.py --path2real <real images path> --path2fake <fake images path> 

Make sure that each of the fake images file name is identical to its corresponding real image file name. Images should be saved in .jpg format.

Super Resolution Results

SinGAN's SR results on the BSD100 dataset can be download from the 'Downloads' folder.

User Study

The data used for the user study can be found in the Downloads folder.

real folder: 50 real images, randomly picked from the places database

fake_high_variance folder: random samples starting from n=N for each of the real images

fake_mid_variance folder: random samples starting from n=N-1 for each of the real images

For additional details please see section 3.1 in our paper

PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
A library of scripts that interact with the PythonTurtle module to create games, drawings, and more

TurtleLib TurtleLib is a library of scripts that interact with the PythonTurtle module to create games, drawings, and more! Using the Scripts Copy or

1 Jan 15, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
An NLP library with Awesome pre-trained Transformer models and easy-to-use interface, supporting wide-range of NLP tasks from research to industrial applications.

简体中文 | English News [2021-10-12] PaddleNLP 2.1版本已发布!新增开箱即用的NLP任务能力、Prompt Tuning应用示例与生成任务的高性能推理! 🎉 更多详细升级信息请查看Release Note。 [2021-08-22]《千言:面向事实一致性的生

6.9k Jan 01, 2023
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022