Analysis of rationale selection in neural rationale models

Overview

Neural Rationale Interpretability Analysis

We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as implemented in Interpretable Neural Predictions with Differentiable Binary Variables by Bastings et al. (2019). We have copied their original repository and build upon it with data perturbation analysis. Specifically, we implement a procedure to perturb sentences of the Stanford Sentiment Treebank (SST) data set and analyze the behavior of the models on the original and perturbed test sets.

Instructions

Installation

You need to have Python 3.6 or higher installed. First clone this repository.

Install all required Python packages using:

pip install -r requirements.txt

And finally download the data:

cd interpretable_predictions
./download_data_sst.sh

This will download the SST data (including filtered word embeddings).

Perturbed data and the model behavior on it is saved in data/sst/data_info.pickle, results/sst/latent_30pct/data_results.pickle, and results/sst/bernoulli_sparsity01505/data_results.pickle. To perform analysis on these, skip to the Plotting and Analysis section. To reproduce these results, continue as below.

Training on Stanford Sentiment Treebank (SST)

To train the latent (CR) rationale model to select 30% of text:

python -m latent_rationale.sst.train \
  --model latent --selection 0.3 --save_path results/sst/latent_30pct

To train the Bernoulli REINFORCE (PG) model with L0 penalty weight 0.01505:

python -m latent_rationale.sst.train \
  --model rl --sparsity 0.01505 --save_path results/sst/bernoulli_sparsity01505

Data Perturbation

To perform the data perturbation, run:

python -m latent_rationale.sst.perturb

This will save the data in data/sst/data_info.pickle.

Prediction and Rationale Selection

To run the latent model and get the rationale selection and prediction, run:

python -m latent_rationale.sst.predict_perturbed --ckpt results/sst/latent_30pct/

For the Bernoulli model, run:

python -m latent_rationale.sst.predict_perturbed --ckpt results/sst/bernoulli_sparsity01505/

These will save the rationale and prediction information in results/sst/latent_30pct/data_results.pickle and results/sst/bernoulli_sparsity01505/data_results.pickle for the two models, respectively.

Plotting and Analysis

To reconstruct the plots for the CR model, run:

python -m latent_rationale.sst.plots --ckpt results/sst/latent_30pct/

To run part of speech (POS) analysis for the CR model, run

python -m latent_rationale.sst.pos_analysis --ckpt results/sst/latent_30pct/

Perturbed Data Format

The perturbed data is stored as a dictionary where keys are indices (ranging from 0 to 2209, as the standard SST train/validation/test split has 2210 sentences). Each value is a dictionary with an original field, containing the original SST data instance, and a perturbed field which is a list of perturbed instances where each perturbed instance is a copy of the original instance but with one token substituted with a replacement. This is all saved in data/sst/data_info.pickle.

Owner
Yiming Zheng
Yiming Zheng
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Xi Dongbo 78 Nov 29, 2022
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022