Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Overview

Hand-Object Contact Prediction (BMVC2021)

This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" by Takuma Yagi, Md. Tasnimul Hasan and Yoichi Sato.

Requirements

  • Python 3.6+
  • ffmpeg
  • numpy
  • opencv-python
  • pillow
  • scikit-learn
  • python-Levenshtein
  • pycocotools
  • torch (1.8.1, 1.4.0- for flow generation)
  • torchvision (0.9.1)
  • mllogger
  • flownet2-pytorch

Caution: This repository requires ~100GB space for testing, ~200GB space for trusted label training and ~3TB space for full training.

Getting Started

Download the data

  1. Download EPIC-KITCHENS-100 videos from the official site. Since this dataset uses 480p frames and optical flows for training and testing you need to download the original videos. Place them to data/videos/PXX/PXX_XX.MP4.
  2. Download and extract the ground truth label and pseudo-label (11GB, only required for training) to data/.

Required videos are listed in configs/*_vids.txt.

Clone repository

git clone  --recursive https://github.com/takumayagi/hand_object_contact_prediction.git

Install FlowNet2 submodule

See the official repo to install the custom components.
Note that flownet2-pytorch won't work on latest pytorch version (confirmed working in 1.4.0).

Download and place the FlowNet2 pretrained model to pretrained/.

Extract RGB frames

The following code will extract 480p rgb frames to data/rgb_frames.
Note that we extract by 60 fps for EK-55 and 50 fps for EK-100 extension.

Validation & test set

for vid in `cat configs/valid_vids.txt`; do bash preprocessing/extract_rgb_frames.bash $vid; done
for vid in `cat configs/test_vids.txt`; do bash preprocessing/extract_rgb_frames.bash $vid; done

Trusted training set

for vid in `cat configs/trusted_train_vids.txt`; do bash preprocessing/extract_rgb_frames.bash $vid; done

Noisy training set

# Caution: take up large space (~400GBs)
for vid in `cat configs/noisy_train_vids.txt`; do bash preprocessing/extract_rgb_frames.bash $vid; done

Extract Flow frames

Similar to above, we extract flow images (in 16-bit png). This requires the annotation files since we only extract flows used in training/test to save space.

# Same for test, trusted_train, and noisy_train
# For trusted labels (test, valid, trusted_train)
# Don't forget to add --gt
for vid in `cat configs/valid_vids.txt`; do python preprocessing/extract_flow_frames.py $vid --gt; done

# For pseudo-labels
# Extracting flows for noisy_train will take up large space
for vid in `cat configs/noisy_train_vids.txt`; do python preprocessing/extract_flow_frames.py $vid; done

Demo (WIP)

Currently, we only have evaluation code against pre-processed input sequences (& bounding boxes). We're planning to release a demo code with track generation.

Test

Download the pretrained models to pretrained/.

Evaluation by test set:

python train.py --model CrUnionLSTMHO --eval --resume pretrained/proposed_model.pth
python train.py --model CrUnionLSTMHORGB --eval --resume pretrained/rgb_model.pth  # RGB baseline
python train.py --model CrUnionLSTMHOFlow --eval --resume pretrained/flow_model.pth  # Flow baseline

Visualization

python train.py --model CrUnionLSTMHO --eval --resume pretrained/proposed_model.pth --vis

This will produce a mp4 file under <output_dir>/vis_predictions/.

Training

Full training

Download the initial models and place them to pretrained/training/.

python train.py --model CrUnionLSTMHO --dir_name proposed --semisupervised --iter_supervision 5000 --iter_warmup 0 --plc --update_clean --init_delta 0.05  --asymp_labeled_flip --nb_iters 800000 --lr_step_list 40000 --save_model --finetune_noisy_net --delta_th 0.01 --iter_snapshot 20000 --iter_evaluation 20000 --min_clean_label_ratio 0.25

Trusted label training

You can train the "supervised" model by the following:

# Train
python train_v1.py --model UnionLSTMHO --dir_name supervised_trainval --train_vids configs/trusted_train_vids.txt --nb_iters 25000 --save_model --iter_warmup 5000 --supervised

# Trainval
python train_v1.py --model UnionLSTMHO --dir_name supervised_trainval --train_vids configs/trusted_trainval_vids.txt --nb_iters 25000 --save_model --iter_warmup 5000 --eval_vids configs/test_vids.txt --supervised

Optional: Training initial models

To train the proposed model (CrUnionLSTMHO), we first train a noisy/clean network before applying gPLC.

python train.py --model UnionLSTMHO --dir_name noisy_pretrain --train_vids configs/noisy_train_vids_55.txt --nb_iters 40000 --save_model --only_boundary
python train.py --model UnionLSTMHO --dir_name clean_pretrain --train_vids configs/trusted_train_vids.txt --nb_iters 25000 --save_model --iter_warmup 2500 --supervised

Tips

  • Set larger --nb_workers an --nb_eval_workers if you have enough number of CPUs.
  • You can set --modality to either rgb or flow if training single-modality models.

Citation

Takuma Yagi, Md. Tasnimul Hasan, and Yoichi Sato, Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction. In Proceedings of the British Machine Vision Conference. 2021.

@inproceedings{yagi2021hand,
  title = {Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction},
  author = {Yagi, Takuma and Hasan, Md. Tasnimul and Sato, Yoichi},
  booktitle = {Proceedings of the British Machine Vision Conference},
  year={2021}
}

When you use the data for training and evaluation, please also cite the original dataset (EPIC-KITCHENS Dataset).

Owner
Takuma Yagi
An apprentice to an action recognition comedian
Takuma Yagi
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
202 Jan 06, 2023
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022