Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

Overview

FFD Source Code

Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

The proposed network framework with attention mechanism

Project Webpage

See the MSU CVLab website for project details and access to the DFFD dataset.

http://cvlab.cse.msu.edu/project-ffd.html

Notes

This code is provided as example code, and may not reflect a specific combination of hyper-parameters presented in the paper.

Description of contents

  • xception.py: Defines the Xception network with the attention mechanism
  • train*.py: Train the model on the train data
  • test*.py: Evaluate the model on the test data

Acknowledgements

If you use or refer to this source code, please cite the following paper:

@inproceedings{cvpr2020-dang,
  title={On the Detection of Digital Face Manipulation},
  author={Hao Dang, Feng Liu, Joel Stehouwer, Xiaoming Liu, Anil Jain},
  booktitle={In Proceeding of IEEE Computer Vision and Pattern Recognition (CVPR 2020)},
  address={Seattle, WA},
  year={2020}
}
Comments
  • Is it possible to release the script for generating edited images by FaceApp?

    Is it possible to release the script for generating edited images by FaceApp?

    Hi, Thanks for releasing the code and dataset! Part of your dataset is generated by FaceApp (using automated scripts running on android devices). I am wondering if you could also release this android script? I also plan to generate some edited images using FaceApp, and an automated script will be quite helpful!! Thanks!

    opened by zjxgithub 2
  • Question about mask images in dataset

    Question about mask images in dataset

    Thank you for releasing the code and the DFFD dataset!

    I noticed that in the "faceapp" part of the dataset, there is a ground-truth manipulation masks image for each fake image. How are these mask images generated?

    The paper mentioned that the ground-truth manipulation mask were calculated by source images and fake images, but I still did not understand how.

    Thank you for answering my question. :)

    opened by piddnad 2
  • Serveral question about dataset

    Serveral question about dataset

    Thanks for releasing the code and the dataset. I have some questions for the dataset,

    • In align_faces/align_faces.m inside scripts.zip, there is a file called box.txt. But I can't find it anywhere. It seems crucial to align and crop the images.

    image

    • All of the images in dataset are in the resolution of 299x299. I wonder how did you process the images in CelebA. I remember the aligned and cropped image in CelebA are in the resolution of 128x128.
    opened by wheatdog 2
  • attention map and gt mask matching

    attention map and gt mask matching

    Hi, thanks for your work. I have a small question. The attention map size is 19x19, but the gt mask (diff image) is 299x299. Are they matched by downsampling gt mask?

    opened by neverUseThisName 1
  • Are label information leaked in testing process?

    Are label information leaked in testing process?

    Thanks for uploading your code and dataset. After a short view I'm considering your predicting process is like: generating masks with scripts on test data, using test data and their masks to feed into trained model to predict. But I was confused that in your test.py file, you get dataset like this:

    def get_dataset():
      return Dataset('test', BATCH_SIZE, CONFIG['img_size'], CONFIG['map_size'], CONFIG['norms'], SEED)
    

    then you differ masks of real and fake photos by using their labels in dataset.py:

      def __getitem__(self, index):
        im_name = self.images[index]
        img = self.load_image(im_name)
        if self.label_name == 'Real':
          msk = torch.zeros(1,19,19)
        else:
          msk = self.load_mask(im_name.replace('Fake/', 'Mask/'))
        return {'img': img, 'msk': msk, 'lab': self.label, 'im_name': im_name}
    

    Is it fair to distinguish masks by label_name in the testing process? I also wonder how to create Mask/ folder when you predict fake images that donot have corresponding real images?

    If i misunderstand anything please correct me, thanks a lot!

    opened by insomnia1996 0
  • May I know where I can find the imagenet pretrained model?

    May I know where I can find the imagenet pretrained model?

    Hi,

    For using pretrained model: xception-b5690688.pth, may I know where I can find the model specified here: https://github.com/JStehouwer/FFD_CVPR2020/blob/master/xception.py#L243

    Thanks.

    opened by ilovecv 2
  • Error in get_batch in train.py

    Error in get_batch in train.py

    Greetings,

    Many thanks to your wok. I am very interested in your work and I want to try out your model. When I ran the train*.py, I encounter the following issue , here are part of the error messages.

    batch = [next(_.generator, None) for _ in self.datasets]
    

    File "D:\Fake Detector\attention_map_to_detect_manipulation\FFD_CVPR2020\dataset.py", line 91, in self = reduction.pickle.load(from_parent)batch = [next(_.generator, None) for _ in self.datasets]

    File "D:\Fake Detector\attention_map_to_detect_manipulation\FFD_CVPR2020\dataset.py", line 73, in get_batch EOFError: Ran out of input

    and reduction.dump(process_obj, to_child) File "C:\Users\xxx\anaconda3\envs\d2l\lib\multiprocessing\reduction.py", line 60, in dump ForkingPickler(file, protocol).dump(obj) TypeError: cannot pickle 'generator' object

    What I did is just make directory data/train/Real(Fake) and place my images dataset into the corresponding folder and then ran the train.py. However, it seems it can't work. May I ask whether I missed anything. I am running the program in windows system and I don't know that will affect as well.

    opened by bitrookie 1
  • Use pretrained model to classify own data?

    Use pretrained model to classify own data?

    Hi @JStehouwer - thank you so much for the awesome code (v2.1)!

    I am trying to use your pretrained model on my own images in order to try out the classifier.

    Are you able to confirm:

    • Filename and format of pretrained model
    • Whether anything else is needed to perform the above classification

    Thanks again

    opened by jtlz2 4
  • dataset questions

    dataset questions

    1、 Whether the published dataset ( FFHQ、FaceAPP、StarGAN、PGGAN、StyleGAN ) has been randomly selected ? And How to generate starGAN mask, how to determine the specific CelebA picture used ? 2、 I have downloaded the FF++、CelebA and DeepFaceLab dataset, how to randomly select the training set, test set and verification set ? And how to set the random seed ? 3、 Which data sets need align processing, and how, please specify ?

    Thank you for your work, it is very good, I will follow your work, but now the problem of dataset makes my work difficult, I hope to get your help.

    opened by miaoct 2
Releases(v2.1)
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels (BMVC 2021)

The Curious Layperson: Fine-Grained Image Recognition without Expert Labels Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi Code

Subhabrata Choudhury 18 Dec 27, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022