A no-BS, dead-simple training visualizer for tf-keras

Overview


A no-BS, dead-simple training visualizer for tf-keras
PyPI version PyPI version

TrainingDashboard

Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook with a simple callback. Features:

  • Plots the training loss and a training metric, updated at the end of each batch
  • Plots training and validation losses, updated at the end of each epoch
  • For each metric, plots training and validation values, updated at the end of each epoch
  • Tabulates losses and metrics (both train and validation) and highlights the highest and lowest values in each column

Why should I use this over tensorboard?
This is way simpler to use.

What about livelossplot?
AFAIK, livelossplot does not support intra-epoch loss/metric plotting. Also, TrainingDashboard uses bqplot for plotting, which provides support for much more interactive elements like tooltips (currently a TODO). On the other hand, livelossplot is a much more mature project, and you should use it if you have a specific use case.

Installation

TrainingDashboard can be installed from PyPI with the following command:

pip install training-dashboard

Alternatively, you can clone this repository and run the following command from the root directory:

pip install .

Usage

TrainingDashboard is a tf-keras callback and should be used as such. It takes the following optional arguments:

  • validation (bool): whether validation data is being used or not
  • min_loss (float): the minimum possible value of the loss function, to fix the lower bound of the y-axis
  • max_loss (float): the maximum possible value of the loss function, to fix the upper bound of the y-axis
  • metrics (list): list of metrics that should be considered for plotting
  • min_metric_dict (dict): dictionary mapping each (or a subset) of the metrics to their minimum possible value, to fix the lower bound of the y-axis
  • max_metric_dict (dict): dictionary mapping each (or a subset) of the metrics to their maximum possible value, to fix the upper bound of the y-axis
  • batch_step (int): step size for plotting the results within each epoch. If the time to process each batch is very small, plotting at each step may cause the training to slow down significantly. In such cases, it is advisable to skip a few batches between each update.
from training_dashboard import TrainingDashboard
model.fit(X,
          Y,
          epochs=10,
          callbacks=[TrainingDashboard()])

or, a more elaborate example:

from training_dashboard import TrainingDashboard
dashboard = TrainingDashboard(validation=True, # because we are using validation data and want to track its metrics
                             min_loss=0, # we want the loss axes to be fixed on the lower end
                             metrics=["accuracy", "auc"], # metrics that we want plotted
                             batch_step=10, # plot every 10th batch
                             min_metric_dict={"accuracy": 0, "auc": 0}, # minimum possible value for metrics used
                             max_metric_dict={"accuracy": 1, "auc": 1}) # maximum possible value for metrics used
model.fit(x_train,
          y_train,
          batch_size=512,
          epochs=25,
          verbose=1,
          validation_split=0.2,
          callbacks=[dashboard])

For a more detailed example, check mnist_example.ipynb inside the examples folder.

Support

Reach out to me at one of the following places!

Twitter: @vibhuagrawal
Email: vibhu[dot]agrawal14[at]gmail

License

Project is distributed under MIT License.

Owner
Vibhu Agrawal
Vibhu Agrawal
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Implementation for Panoptic-PolarNet (CVPR 2021)

Panoptic-PolarNet This is the official implementation of Panoptic-PolarNet. [ArXiv paper] Introduction Panoptic-PolarNet is a fast and robust LiDAR po

Zixiang Zhou 126 Jan 01, 2023
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022