UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

Overview

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

This repository contains UA-GEC data and an accompanying Python library.

Data

All corpus data and metadata stay under the ./data. It has two subfolders for train and test splits

Each split (train and test) has further subfolders for different data representations:

./data/{train,test}/annotated stores documents in the annotated format

./data/{train,test}/source and ./data/{train,test}/target store the original and the corrected versions of documents. Text files in these directories are plain text with no annotation markup. These files were produced from the annotated data and are, in some way, redundant. We keep them because this format is convenient in some use cases.

Metadata

./data/metadata.csv stores per-document metadata. It's a CSV file with the following fields:

  • id (str): document identifier.
  • author_id (str): document author identifier.
  • is_native (int): 1 if the author is native-speaker, 0 otherwise
  • region (str): the author's region of birth. A special value "Інше" is used both for authors who were born outside Ukraine and authors who preferred not to specify their region.
  • gender (str): could be "Жіноча" (female), "Чоловіча" (male), or "Інша" (other).
  • occupation (str): one of "Технічна", "Гуманітарна", "Природнича", "Інша"
  • submission_type (str): one of "essay", "translation", or "text_donation"
  • source_language (str): for submissions of the "translation" type, this field indicates the source language of the translated text. Possible values are "de", "en", "fr", "ru", and "pl".
  • annotator_id (int): ID of the annotator who corrected the document.
  • partition (str): one of "test" or "train"
  • is_sensitive (int): 1 if the document contains profanity or offensive language

Annotation format

Annotated files are text files that use the following in-text annotation format: {error=>edit:::error_type=Tag}, where error and edit stand for the text item before and after correction respectively, and Tag denotes an error category (Grammar, Spelling, Punctuation, or Fluency).

Example of an annotated sentence:

    I {likes=>like:::error_type=Grammar} turtles.

An accompanying Python package, ua_gec, provides many tools for working with annotated texts. See its documentation for details.

Train-test split

We expect users of the corpus to train and tune their models on the train split only. Feel free to further split it into train-dev (or use cross-validation).

Please use the test split only for reporting scores of your final model. In particular, never optimize on the test set. Do not tune hyperparameters on it. Do not use it for model selection in any way.

Next section lists the per-split statistics.

Statistics

UA-GEC contains:

Split Documents Sentences Tokens Authors
train 851 18,225 285,247 416
test 160 2,490 43,432 76
TOTAL 1,011 20,715 328,779 492

See stats.txt for detailed statistics generated by the following command (ua-gec must be installed first):

$ make stats

Python library

Alternatively to operating on data files directly, you may use a Python package called ua_gec. This package includes the data and has classes to iterate over documents, read metadata, work with annotations, etc.

Getting started

The package can be easily installed by pip:

    $ pip install ua_gec==1.1

Alternatively, you can install it from the source code:

    $ cd python
    $ python setup.py develop

Iterating through corpus

Once installed, you may get annotated documents from the Python code:

    
    >>> from ua_gec import Corpus
    >>> corpus = Corpus(partition="train")
    >>> for doc in corpus:
    ...     print(doc.source)         # "I likes it."
    ...     print(doc.target)         # "I like it."
    ...     print(doc.annotated)      # <AnnotatedText("I {likes=>like} it.")
    ...     print(doc.meta.region)    # "Київська"

Note that the doc.annotated property is of type AnnotatedText. This class is described in the next section

Working with annotations

ua_gec.AnnotatedText is a class that provides tools for processing annotated texts. It can iterate over annotations, get annotation error type, remove some of the annotations, and more.

While we're working on a detailed documentation, here is an example to get you started. It will remove all Fluency annotations from a text:

    >>> from ua_gec import AnnotatedText
    >>> text = AnnotatedText("I {likes=>like:::error_type=Grammar} it.")
    >>> for ann in text.iter_annotations():
    ...     print(ann.source_text)       # likes
    ...     print(ann.top_suggestion)    # like
    ...     print(ann.meta)              # {'error_type': 'Grammar'}
    ...     if ann.meta["error_type"] == "Fluency":
    ...         text.remove(ann)         # or `text.apply(ann)`

Contributing

  • The data collection is an ongoing activity. You can always contribute your Ukrainian writings or complete one of the writing tasks at https://ua-gec-dataset.grammarly.ai/

  • Code improvements and document are welcomed. Please submit a pull request.

Contacts

Owner
Grammarly
Millions of users rely on Grammarly's AI-powered products to make their messages, documents, and social media posts clear, mistake-free, and impactful.
Grammarly
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

757 Dec 30, 2022