A toolset for creating Qualtrics-based IAT experiments

Overview

Qualtrics IAT Tool

A web app for generating the Implicit Association Test (IAT) running on Qualtrics

Online Web App

The app is hosted by Streamlit, a Python-based web framework. You can use the app here: Qualtrics IAT Tool.

Run Web App Offline

Alternatively, you can run the app offline. The general steps are:

  1. Download the latest version of the repository.
  2. Install Python and Streamlit.
  3. Run the web app in a Terminal with the command: streamlit run your_directory/qualtrics_iat/web_app.py

Citation:

Cui Y., Robinson, J.D., Kim, S.K., Kypriotakis G., Green C.E., Shete S.S., & Cinciripini P.M., An open source web app for creating and scoring Qualtrics-based implicit association test. Behavior Research Methods (submitted)

Key Functionalities

The web app has three key functionalities: IAT Generator, Qualtrics Tools, and IAT Data Scorer. Each functionality is clearly described on the web app regarding what parameters are expected and what they mean. If you have any questions, please feel free to leave a comment or send your inquiries to me.

IAT Generator

In this section, you can generate the Qualtrics survey template to run the IAT experiment. Typically, you need to consider specifying the following parameters. We'll use the classic flower-insect IAT as an example. As a side note, there are a few other IAT tasks (e.g., gender-career) in the app for your reference.

  • Positive Target Concept: Flower
  • Negative Target Concept: Insect
  • Positive Target Stimuli: Orchid, Tulip, Rose, Daffodil, Daisy, Lilac, Lily
  • Negative Target Stimuli: Wasp, Flea, Roach, Centipede, Moth, Bedbug, Gnat
  • Positive Attribute Concept: Pleasant
  • Negative Attribute Concept: Unpleasant
  • Positive Attribute Stimuli: Joy, Happy, Laughter, Love, Friend, Pleasure, Peace, Wonderful
  • Negative Attribute Stimuli: Evil, Agony, Awful, Nasty, Terrible, Horrible, Failure, War

Once you specify these parameters, you can generate a Qualtrics template file, from which you can create a Qualtrics survey that is ready to be administered. Please note that not all Qualtrics account types support creating surveys from a template. Alternatively, you can obtain the JavaScript code of running the IAT experiment and add the code to a Qualtrics question. If you do this, please make sure that you set the proper embedded data fields.

Qualtrics Tools

In this section, you can directly interact with the Qualtrics server by invoking its APIs. To use these APIs, you need to obtain the token in your account settings. Key functionalities include:

  • Upload Images to Qualtrics Graphic Library: You can upload images from your local computer to your Qualtrics Graphics Library. You need to specify the library ID # and the name of the folder to which the images will be uploaded. If the upload succeeds, the web app will return the URLs for these images. You can set these URLs as stimuli in the IAT if your experiment uses pictures.

  • Create Surveys: You can create surveys by uploading a QSF file or the JSON text. Please note that the QSF file uses JSON as its content. If you're not sure about the JSON content, you can inspect a template file.

  • Export Survey Responses: You can export a survey's responses for offline processing. You need to specify the library ID # and the export file format (e.g., csv).

  • Delete Images: You can delete images from your Qualtrics Graphics Library. You need to specify the library ID # and the IDs for the images that you want to delete.

  • Delete Survey: You can delete surveys from your Qualtrics Library. You need to specify the survey ID #.

IAT Data Scorer

In this section, you can score the IAT data from the exported survey response. Currently, there are two calculation algorithms supported: the conventional and the improved.

Citation for the algorithms: Greenwald et al. Understanding and Using the Implicit Association Test: I. An Improved Scoring Algorithm. Journal of Personality and Social Psychology 2003 (85)2:192-216

The Conventional Algorithm

  1. Use data from B4 & B7 (counter-balanced order will be taken care of in the calculation).
  2. Nonsystematic elimination of subjects for excessively slow responding and/or high error rates.
  3. Drop the first two trials of each block.
  4. Recode latencies outside 300/3,000 boundaries to the nearer boundary value.
  5. 5.Log-transform the resulting values.
  6. Average the resulting values for each of the two blocks.
  7. Compute the difference: B7 - B4.

The Improved Algorithm

  1. Use data from B3, B4, B6, & B7 (counter-balanced order will be taken care of in the calculation).
  2. Eliminate trials with latencies > 10,000 ms; Eliminate subjects for whom more than 10% of trials have latency less than 300 ms.
  3. Use all trials; Delete trials with latencies below 400 ms (alternative).
  4. Compute mean of correct latencies for each block. Compute SD of correct latencies for each block (alternative).
  5. Compute one pooled SD for all trials in B3 & B6, another for B4 & B7; Compute one pooled SD for correct trials in B3 & B6, another for B4 & B7 (alternative).
  6. Replace each error latency with block mean (computed in Step 5) + 600 ms; Replace each error latency with block mean + 2 x block SD of correct responses (alternative 1); Use latencies to correct responses when correction to error responses is required (alternative 2).
  7. Average the resulting values for each of the four blocks.
  8. Compute two differences: B6 - B3 and B7 - B4.
  9. Divide each difference by its associated pooled-trials SD.
  10. Average the two quotients.

Questions?

If you have any questions or would like to contribute to this project, please send me an email: [email protected].

License

MIT License

Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

Amir Shahroudy 578 Dec 30, 2022
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022