The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Overview

Generative Modeling with Optimal Transport Maps

The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022. It focuses on Optimal Transport Modeling (OTM) in ambient space, e.g. spaces of high-dimensional images. While analogous approaches consider OT maps in the latent space of an autoencoder, this paper focuses on fitting an OT map directly between noise and ambient space. The method is evaluated on generative modeling and unpaired image restoration tasks. In particular, large-scale computer vision problems, such as denoising, colorization, and inpainting are considered in unpaired image restoration. The overall pipeline of OT as generative map and OT as cost of generative model is given below.

Latent Space Optimal Transport

Our method is different from the prevalent approach of OT in the latent space shown below.

Ambient Space Mass Transport

The scheme of our approach for learning OT maps between unequal dimensions.

Prerequisites

The implementation is GPU-based. Single GPU (V100) is enough to run each experiment. Tested with torch==1.4.0 torchvision==0.5.0. To reproduce the reported results, consider using the exact version of PyTorch and its required dependencies as other versions might be incompatible.

Repository structure

All the experiments are issued in the form of pretty self-explanatory python codes.

Main Experiments

Execute the following commands in the source folder.

Training

  • python otm_mnist_32x22.py --train 1 -- OTM between noise and MNIST, 32x32, Grayscale;
  • python otm_cifar_32x32.py --train 1 -- OTM between noise and CIFAR10, 32x32, RGB;
  • python otm_celeba_64x64.py --train 1 -- OTM between noise and CelebA, 64x64, RGB;
  • python otm_celeba_denoise_64x64.py --train 1 -- OTM for unpaired denoising on CelebA, 64x64, RGB;
  • python otm_celeba_colorization_64x64.py --train 1 -- OTM for unpaired colorization on CelebA, 64x64, RGB;
  • python otm_celeba_inpaint_64x64.py --train 1 -- OTM unpaired inpainting on CelebA, 64x64, RGB.

Run inference with the best iteration.

Inference

  • python otm_mnist_32x32.py --inference 1 --init_iter 100000
  • python otm_cifar_32x32.py --inference 1 --init_iter 100000
  • python otm_celeba_64x64.py --inference 1 --init_iter 100000
  • python otm_celeba_denoise_64x64.py --inference 1 --init_iter 100000
  • python otm_celeba_colorization_64x64.py --inference 1 --init_iter 100000
  • python otm_celeba_inpaint_64x64.py --inference 1 --init_iter 100000

Toy Experiments in 2D

  • source/toy/OTM-GO MoG.ipynb -- Mixture of 8 Gaussians;
  • source/toy/OTM-GO Moons.ipynb -- Two Moons;
  • source/toy/OTM-GO Concentric Circles.ipynb -- Concentric Circles;
  • source/toy/OTM-GO S Curve.ipynb -- S Curve;
  • source/toy/OTM-GO Swirl.ipynb -- Swirl.

Refer to Credit Section for baselines.

Results

Optimal transport modeling between high-dimensional noise and ambient space.

Randomly generated samples

Optimal transport modeling for unpaired image restoration tasks.

Following is the experimental setup that is considered for unpaired image restoration.

OTM for image denoising on test C part of CelebA, 64 × 64.

OTM for image colorization on test C part of CelebA, 64 × 64.

OTM for image inpainting on test C part of CelebA, 64 × 64.

Optimal transport modeling for toy examples.

OTM in low-dimensional space, 2D.

Credits

Owner
Litu Rout
I am broadly interested in Optimization, Statistical Learning Theory, Interactive Machine Learning, and Optimal Transport.
Litu Rout
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

1 Nov 03, 2021
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022