The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

Overview

OverlapTransformer

The code for our paper submitted to RAL/IROS 2022:

OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition. PDF

OverlapTransformer is a novel lightweight neural network exploiting the LiDAR range images to achieve fast execution with less than 4 ms per frame using python, less than 2 ms per frame using C++ in LiDAR similarity estimation. It is a newer version of our previous OverlapNet, which is faster and more accurate in LiDAR-based loop closure detection and place recognition.

Developed by Junyi Ma, Xieyuanli Chen and Jun Zhang.

Haomo Dataset

Fig. 1 An online demo for finding the top1 candidate with OverlapTransformer on sequence 1-1 (database) and 1-3 (query) of Haomo Dataset.

Fig. 2 Haomo Dataset which is collected by HAOMO.AI.

More details of Haomo Dataset can be found in dataset description (link).

Table of Contents

  1. Introduction and Haomo Dataset
  2. Publication
  3. Dependencies
  4. How to use
  5. License

Publication

If you use our implementation in your academic work, please cite the corresponding paper (PDF):

@article{ma2022arxiv, 
	author = {Junyi Ma and Jun Zhang and Jintao Xu and Rui Ai and Weihao Gu and Cyrill Stachniss and Xieyuanli Chen},
	title  = {{OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition}},
	journal = {arXiv preprint},
	eprint = {2203.03397},
	year = {2022}
}

Dependencies

We use pytorch-gpu for neural networks.

An nvidia GPU is needed for faster retrival. OverlapTransformer is also fast enough when using the neural network on CPU.

To use a GPU, first you need to install the nvidia driver and CUDA.

  • CUDA Installation guide: link
    We use CUDA 11.3 in our work. Other versions of CUDA are also supported but you should choose the corresponding torch version in the following Torch dependences.

  • System dependencies:

    sudo apt-get update 
    sudo apt-get install -y python3-pip python3-tk
    sudo -H pip3 install --upgrade pip
  • Torch dependences:
    Following this link, you can download Torch dependences by pip:

    pip3 install torch==1.10.2+cu113 torchvision==0.11.3+cu113 torchaudio==0.10.2+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html

    or by conda:

    conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Other Python dependencies (may also work with different versions than mentioned in the requirements file):

    sudo -H pip3 install -r requirements.txt

How to use

We provide a training and test tutorials for KITTI sequences in this repository. The tutorials for Haomo dataset will be released together with Haomo dataset.

We recommend you follow our code and data structures as follows.

Code structure

├── config
│   ├── config_haomo.yml
│   └── config.yml
├── modules
│   ├── loss.py
│   ├── netvlad.py
│   ├── overlap_transformer_haomo.py
│   └── overlap_transformer.py
├── test
│   ├── test_haomo_topn_prepare.py
│   ├── test_haomo_topn.py
│   ├── test_kitti00_PR_prepare.py
│   ├── test_kitti00_PR.py
│   ├── test_results_haomo
│   │   └── predicted_des_L2_dis_bet_traj_forward.npz (to be generated)
│   └── test_results_kitti
│       └── predicted_des_L2_dis.npz (to be generated)
├── tools
│   ├── read_all_sets.py
│   ├── read_samples_haomo.py
│   ├── read_samples.py
│   └── utils
│       ├── gen_depth_data.py
│       ├── split_train_val.py
│       └── utils.py
├── train
│   ├── training_overlap_transformer_haomo.py
│   └── training_overlap_transformer_kitti.py
├── valid
│   └── valid_seq.py
├── visualize
│   ├── des_list.npy
│   └── viz_haomo.py
└── weights
    ├── pretrained_overlap_transformer_haomo.pth.tar
    └── pretrained_overlap_transformer.pth.tar

Dataset structure

In the file config.yaml, the parameters of data_root are described as follows:

  data_root_folder (KITTI sequences root) follows:
  ├── 00
  │   ├── depth_map
  │     ├── 000000.png
  │     ├── 000001.png
  │     ├── 000002.png
  │     ├── ...
  │   └── overlaps
  │     ├── train_set.npz
  ├── 01
  ├── 02
  ├── ...
  └── 10
  
  valid_scan_folder (KITTI sequence 02 velodyne) contains:
  ├── 000000.bin
  ├── 000001.bin
  ...

  gt_valid_folder (KITTI sequence 02 computed overlaps) contains:
  ├── 02
  │   ├── overlap_0.npy
  │   ├── overlap_10.npy
  ...

You need to download or generate the following files and put them in the right positions of the structure above:

  • You can find gt_valid_folder for sequence 02 here.
  • Since the whole KITTI sequences need a large memory, we recommend you generate range images such as 00/depth_map/000000.png by the preprocessing from Overlap_Localization or its C++ version, and we will not provide these images. Please note that in OverlapTransformer, the .png images are used instead of .npy files saved in Overlap_Localization.
  • More directly, you can generate .png range images by the script from OverlapNet updated by us.
  • overlaps folder of each sequence below data_root_folder is provided by the authors of OverlapNet here.

Quick Use

For a quick use, you could download our model pretrained on KITTI, and the following two files also should be downloaded :

Then you should modify demo1_config in the file config.yaml.

Run the demo by:

cd demo
python ./demo_compute_overlap_sim.py

You can see a query scan (000000.bin of KITTI 00) with a reprojected positive sample (000005.bin of KITTI 00) and a reprojected negative sample (000015.bin of KITTI 00), and the corresponding similarity.

Fig. 3 Demo for calculating overlap and similarity with our approach.

Training

In the file config.yaml, training_seqs are set for the KITTI sequences used for training.

You can start the training with

cd train
python ./training_overlap_transformer_kitti.py

You can resume from our pretrained model here for training.

Testing

Once a model has been trained , the performance of the network can be evaluated. Before testing, the parameters shoud be set in config.yaml

  • test_seqs: sequence number for evaluation which is "00" in our work.
  • test_weights: path of the pretrained model.
  • gt_file: path of the ground truth file provided by the author of OverlapNet, which can be downloaded here.

Therefore you can start the testing scripts as follows:

cd test
python test_kitti00_PR_prepare.py
python test_kitti00_PR.py

After you run test_kitti00_PR_prepare.py, a file named predicted_des_L2_dis.npz is generated in test_results_kitti, which is used by python test_kitti00_PR.py

For a quick test of the training and testing procedures, you could use our pretrained model.

Visualization

Visualize evaluation on KITTI 00

Firstly, to visualize evaluation on KITTI 00 with search space, the follwoing three files should be downloaded:

and modify the paths in the file config.yaml. Then

cd visualize
python viz_kitti.py

Fig. 4 Evaluation on KITTI 00 with search space from SuMa++ (a semantic LiDAR SLAM method).

Visualize evaluation on Haomo challenge 1 (after Haomo dataset is released)

We also provide a visualization demo for Haomo dataset after Haomo dataset is released (Fig. 1). Please download the descriptors of database (sequence 1-1 of Haomo dataset) firstly and then:

cd visualize
python viz_haomo.py

C++ implemention

We provide a C++ implemention of OverlapTransformer with libtorch for faster retrival.

  • Please download .pt and put it in the OT_libtorch folder.
  • Before building, make sure that PCL exists in your environment.
  • Here we use LibTorch for CUDA 11.3 (Pre-cxx11 ABI). Please modify the path of Torch_DIR in CMakeLists.txt.
  • For more details of LibTorch installation , please check this website.
    Then you can generate a descriptor of 000000.bin of KITTI 00 by
cd OT_libtorch/ws
mkdir build
cd build/
cmake ..
make -j6
./fast_ot 

You can find our C++ OT can generate a decriptor with less than 2 ms per frame.

License

Copyright 2022, Junyi Ma, Xieyuanli Chen, Jun Zhang, HAOMO.AI Technology Co., Ltd., China.

This project is free software made available under the GPL v3.0 License. For details see the LICENSE file.

Owner
HAOMO.AI
HAOMO.AI Technology Co., Ltd. (HAOMO.AI) is an artificial intelligence technology company dedicated to autonomous driving
HAOMO.AI
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023