A Joint Video and Image Encoder for End-to-End Retrieval

Overview

Frozen️ in Time ❄️ ️️️️

A Joint Video and Image Encoder for End-to-End Retrieval

project page | arXiv | webvid-data alt text Repository containing the code, models, data for end-to-end retrieval. WebVid data can be found here


📝 Preparation

  1. Create conda env conda env create -f requirements/frozen.yml

  2. Create data / experiment folders mkdir data; mkdir exps, note this can just be a symlink to where you want to store big data.

🔧 Finetuning (benchmarks: MSR-VTT)

  1. wget https://www.robots.ox.ac.uk/~maxbain/frozen-in-time/data/MSRVTT.zip -P data; unzip data/MSRVTT.zip -d data

  2. Change num_gpus in the config file accordingly.

  3. Train python train.py --config configs/msrvtt_4f_i21k.json

  4. Test python test.py --resume exps/models/{EXP_NAME}/{EXP_TIMESTAMP}/model_best.pth

For finetuning a pretrained model, set "load_checkpoint": "PATH_TO_MODEL" in the config file.

🏋 ️‍️ Pretraining

  1. Download WebVid-2M (see https://github.com/m-bain/webvid)

  2. Download CC-3M (see https://ai.google.com/research/ConceptualCaptions/download)

  3. Train. python train.py --config CONFIG_PATH. Here are the different options:

    a. Dataset combinations

     i. CC-3M + WebVid2M: configs/cc-webvid2m-pt-i2k.json
     ii. WebVid2M : configs/webvid2m-pt-i2k.json
    

    You can add in an arbitrary number of image/video datasets for pre-training by adding as many dataloaders to the config file dataloader list as your heart desires. Adding more datasets will likely to higher downstream performance.

    b. Number of frames

    For image datasets, this should always be set to video_params": {"num_frames": 1, ...}.

    For video datasets, set this to what you want. N.B. More frames requires = more gpu memory.

    If, like us, you are not a big company and have limited compute, then you will benefit by training via a curriculum on the number of frames. A lot of the knowledge can be learned in the 1-frame setting, as we show in the paper. You can then finetune with more frames. See curriculum learning section

    c. Finetuning

    Set "load_checkpoint": "FULL_MODEL_PATH" in the config file. You can now use different experiment params, such as num_frames, to do curriculum learning for example.

🗄 Pretrained Weights

📚 Curriculum Learning on #frames

Curriculum learning on the number of frames in pretraining achieves similar performance with significant reduction in compute (both memory and training time). This is because model has higher throughput for fewer frames, as well as allowing a bigger batch size for the same gpu memory.

Our best model was trained on 1-frame then finetuned on 4-frames on CC+WebVid2M.

Train on 1-frame until the training loss converges, then finetune on 4-frames with the same config, from the 1-frame checkpoint via setting load_checkpoint in config file. 4-frame finetuning needs much less iterations (~10% of 1-frame setting is sufficient) since most of the knowledge is learned in the 1-frame setting.

📈 Experiment Logging and Visualising

This repository uses a sacred backbone for logging and tracking experiments, with a neptune front end. It makes life a lot easier. If you want to activate this:

  1. Create a neptune.ai account.
  2. Create a project, copy in your credentials in train.py and remove the ValueError
  3. Set neptune: true in your config files.

🎓 Cite

If you use this code in your research, please cite:

@misc{bain2021frozen,
      title={Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval}, 
      author={Max Bain and Arsha Nagrani and Gül Varol and Andrew Zisserman},
      year={2021},
      eprint={2104.00650},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

🙏 Acknowledgements

This code is based off the pytorch-template https://github.com/victoresque/pytorch-template

As well as many good practices adopted from Samuel Albanie's https://github.com/albanie/collaborative-experts

Owner
PhD Student, VGG, Oxford
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
An off-line judger supporting distributed problem repositories

Thaw 中文 | English Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHu

countercurrent_time 2 Jan 09, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022