Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Overview

Reformulation-Aware-Metrics

License made-with-python

Introduction

This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper.

Requirements

  • python 2.7
  • sklearn
  • scipy

Data Preparation

Preprocess two datasets TianGong-SS-FSD and TianGong-Qref into the the following format:

[Reformulation Type][Click List][Usefulness List][Satisfaction Label]
  • Reformulation Type: A (Add), D (Delete), K (Keep), T (Transform or Change), O (Others), F (First Query).
  • Click List: 1 -- Clicked, 0 -- Not Clicked.
  • Usefulness List: Usefulness or Relevance, 4-scale in TianGong-QRef, 5-scale in TianGong-SS-FSD.
  • Satisfaction Label: 5-scale for both datasets.

Then, bootsrap them into N samples and put the bootstapped data (directories) into ./data/bootstrap_fsd and ./data/bootstrap_qref.

Results

The results for each metrics are shown in the following table:

Metric Qref-Spearman Qref-Pearson Qref-MSE FSD-Spearman FSD-Pearson FSD-MSE
RBP 0.4375 0.4180 N/A 0.4898 0.5222 N/A
DCG 0.4434 0.4182 N/A 0.5022 0.5290 N/A
BPM 0.4552 0.3915 N/A 0.5801 0.6052 N/A
RBP sat 0.4389 0.4170 N/A 0.5165 0.5527 N/A
DCG sat 0.4446 0.4166 N/A 0.5047 0.5344 N/A
BPM sat 0.4622 0.3674 N/A 0.5960 0.6029 N/A
rrDBN 0.4123 0.3670 1.1508 0.5908 0.5602 1.0767
rrSDBN 0.4177 0.3713 1.1412 0.5991 0.5703 1.0524
uUBM 0.4812 0.4303 1.0607 0.6242 0.5775 0.8795
uPBM 0.4827 0.4369 1.0524 0.6210 0.5846 0.8644
uSDBN 0.4837 0.4375 1.1443 0.6290 0.6081 0.8840
uDBN 0.4928 0.4458 1.0801 0.6339 0.6207 0.8322

To reproduce the results of traditional metrics such as RBP, DCG and BPM, we recommend you to use this repo: cwl_eval. 🤗

Quick Start

To train RAMs, run the script as follows:

python run.py --click_model DBN \
	--data qref \
	--id 0 \
	--metric_type expected_utility \
	--max_usefulness 3 \
	--k_num 6 \
	--max_dnum 10 \
	--iter_num 10000 \
	--alpha 0.01 \
	--alpha_decay 0.99 \
	--lamda 0.85 \
	--patience 5 \
	--use_knowledge True
  • click_model: options: ['DBN', 'SDBN', 'UBM', 'PBM']
  • data: options: ['fsd', 'qref']
  • metric_type: options: ['expected_utility', 'effort']
  • id: the bootstrapped sample id.
  • k_num: the number of user intent shift type will be considered, should be less than or equal to six.
  • max_dnum: the maximum number of top documents to be considered for a specific query.
  • use_knowledge: whether to use the transition probability from syntactic reformulation types to intent-level ones derived from the TianGong-Qref dataset.

Citation

If you find the resources in this repo useful, please do not save your star and cite our work:

@inproceedings{chen2021incorporating,
  title={Incorporating Query Reformulating Behavior into Web Search Evaluation},
  author={Chen, Jia and Liu, Yiqun and Mao, Jiaxin and Zhang, Fan and Sakai, Tetsuya and Ma, Weizhi and Zhang, Min and Ma, Shaoping},
  booktitle={Proceedings of the 30th ACM International Conference on Information and Knowledge Management},
  year={2021},
  organization={ACM}
}

Contact

If you have any questions, please feel free to contact me via [email protected] or open an issue.

Owner
xuanyuan14
Jia Chen 陈佳
xuanyuan14
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022