Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

Overview

AutoInt: Automatic Integration for Fast Neural Volume Rendering
CVPR 2021

Project Page | Video | Paper

Open Colab
PyTorch implementation of automatic integration.
AutoInt: Automatic Integration for Fast Neural Volume Rendering
David B. Lindell*, Julien N. P. Martel*, Gordon Wetzstein
Stanford University
*denotes equal contribution
in CVPR 2021

Quickstart

To get started quickly, we provide a collab link above. Otherwise, you can clone this repo and follow the below instructions.

To setup a conda environment, download example training data, begin the training process, and launch Tensorboard:

conda env create -f environment.yml
conda activate autoint 
cd experiment_scripts
python train_1d_integral.py
tensorboard --logdir=../logs --port=6006

This example will fit a grad network to a 1D signal and evaluate the integral. You can monitor the training in your browser at localhost:6006. You can also train a network on the sparse tomography problem presented in the paper with python train_sparse_tomography.py.

Autoint for Neural Rendering

Automatic integration can be used to learn closed form solutions to the volume rendering equation, which is an integral equation accumulates transmittance and emittance along rays to render an image. While conventional neural renderers require hundreds of samples along each ray to evaluate these integrals (and hence hundreds of costly forward passes through a network), AutoInt allows evaluating these integrals far fewer forward passes.

Training

To run AutoInt for neural rendering, first set up the conda environment with

conda env create -f environment.yml
conda activate autoint 

Then, download the datasets to the data folder. We allow training on any of three datasets. The synthetic Blender data from NeRF and the LLFF scenes are hosted here. The DeepVoxels data are hosted here.

Finally, use the provided config files in the experiment_scripts/configs folder to train on these datasets. For example, to train on a NeRF Blender dataset, run the following

python train_autoint_radiance_field.py --config ./configs/config_blender_tiny.ini
tensorboard --logdir=../logs/ --port=6006

This will train a small, low-resolution scene. To train scenes at high-resolution (requires a few days of training time), use the config_blender.ini, config_deepvoxels.ini, or config_llff.ini config files.

Rendering

Rendering from a trained model can be done with the following command.

python train_autoint_radiance_field.py --config /path/to/config/file --render_model ../logs/path/to/log/directory <epoch number> --render_ouput /path/to/output/folder

Here, the --render_model command indicates the log directory where the code saves the models and checkpoints. For example, this would be ../logs/blender_lego for the default Blender dataset. Then, the epoch number can be found by looking at numbers of the the saved checkpoint filenames in ../logs/blender_lego/checkpoints/. Finally, --render_output should specify a folder where the output rendered images will be generated.

Citation

@inproceedings{autoint2021,
  title={AutoInt: Automatic Integration for Fast Neural Volume Rendering},
  author={David B. Lindell and Julien N. P. Martel and Gordon Wetzstein},
  year={2021},
  booktitle={Proc. CVPR},
}
Owner
Stanford Computational Imaging Lab
Next-generation computational imaging and display systems.
Stanford Computational Imaging Lab
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023