OCR Post Correction for Endangered Language Texts

Overview

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transactions of the Association for Computational Linguistics (TACL)!

Check out the paper here.

OCR Post Correction for Endangered Language Texts

This repository contains code for models and experiments from the paper "OCR Post Correction for Endangered Language Texts".

Textual data in endangered languages is often found in formats that are not machine-readable, including scanned images of paper books. Extracting the text is challenging because there is typically no annotated data to train an OCR system for each endangered language. Instead, we focus on post-correcting the OCR output from a general-purpose OCR system.

📌 In the paper, we present a dataset containing annotations for documents in three critically endangered languages: Ainu, Griko, Yakkha.

📌 Our model reduces the recognition error rate by 34% on average, over a state-of-the-art OCR system.

Learn more about the paper here!

OCR Post-Correction

The goal of OCR post-correction is to automatically correct errors in the text output from an existing OCR system.

The existing OCR system is used to obtain a first pass transcription of the input image (example below in the endangered language Griko):

First pass OCR transcription

The incorrectly recognized characters in the first pass are then corrected by the post-correction model.

Corrected transcription

Model

As seen in the example above, OCR post-correction is a text-based sequence-to-sequence task.

📌 We use a character-level encoder-decoder architecture with attention and add several adaptations for the low-resource setting. The paper has all the details!

📌 The model is trained in a supervised manner. The training data consists of first pass OCR outputs as the source with corresponding manually corrected transcriptions as the target.

📌 Some books that contain texts in endangered languages also contain translations of the text in another (usually high-resource) language. We incorporate an additional encoder in the model, with a multisource framework, to use the information from these translations if they are available.

We provide instructions for both single-source and multisource models:

  • The single-source model can be used for almost any document and is significantly easier to set up.

  • The multisource model can only be used if translations are available.

Dataset

This repository contains a sample from our dataset in sample_dataset, which you can use to train the post-correction model. Get the full dataset here!

However, this repository can be used to train OCR post-correction models for documents in any language!

🚀 If you want to use our model with a new set of documents, construct a dataset by following the steps here.

🚀 We'd love to hear about the new datasets and models you build: send us an email at [email protected]!

Running Experiments

Once you have a suitable dataset (e.g., sample_dataset or your own dataset), you can train a model and run experiments on OCR post-correction.

If you have your own dataset, you can use the utils/prepare_data.py script to create train, development, and test splits (see the last step here).

The steps are described below, illustrated with sample_dataset/postcorrection. If using another dataset, simply change the experiment settings to point to your dataset and run the same scripts.

Requirements

Python 3+ is required. Pip can be used to install the packages:

pip install -r postcorr_requirements.txt

Training

The process of training the post-correction model has two main steps:

  • Pretraining with first pass OCR outputs.
  • Training with manually corrected transcriptions in a supervised manner.

For a single-source model, modify the experimental settings in train_single-source.sh to point to the appropriate dataset and desired output folder. It is currently set up to use sample_dataset.

Then run

bash train_single-source.sh

For multisource, use train_multi-source.sh.

Log files and saved models are written to the user-specified experiment folder for both the pretraining and training steps. For a list of all available hyperparameters and options, look at postcorrection/constants.py and postcorrection/opts.py.

Testing

For testing with a single-source model, modify the experimental settings in test_single-source.sh. It is currently set up to use sample_dataset.

Then run

bash test_single-source.sh

For multisource, use test_multi-source.sh.

Citation

Please cite our paper if this repository was useful.

@inproceedings{rijhwani-etal-2020-ocr,
    title = "{OCR} {P}ost {C}orrection for {E}ndangered {L}anguage {T}exts",
    author = "Rijhwani, Shruti  and
      Anastasopoulos, Antonios  and
      Neubig, Graham",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-main.478",
    doi = "10.18653/v1/2020.emnlp-main.478",
    pages = "5931--5942",
}

License

Owner
Shruti Rijhwani
Ph.D. student at CMU, working on natural language processing.
Shruti Rijhwani
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th

workingcoder 115 Jan 05, 2023
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021