PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Related tags

Deep Learningmae
Overview

Masked Autoencoders: A PyTorch Implementation

This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners:

@Article{MaskedAutoencoders2021,
  author  = {Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and Piotr Doll{\'a}r and Ross Girshick},
  journal = {arXiv:2111.06377},
  title   = {Masked Autoencoders Are Scalable Vision Learners},
  year    = {2021},
}
  • The original implementation was in TensorFlow+TPU. This re-implementation is in PyTorch+GPU.

  • This repo is a modification on the DeiT repo. Installation and preparation follow that repo.

  • This repo is based on timm==0.3.2, for which a fix is needed to work with PyTorch 1.8.1+.

Catalog

  • Visualization demo
  • Pre-trained checkpoints + fine-tuning code
  • Pre-training code

Visualization demo

Run our interactive visualization demo using Colab notebook (no GPU needed):

Fine-tuning with pre-trained checkpoints

The following table provides the pre-trained checkpoints used in the paper, converted from TF/TPU to PT/GPU:

ViT-Base ViT-Large ViT-Huge
pre-trained checkpoint download download download
md5 8cad7c b8b06e 9bdbb0

The fine-tuning instruction is in FINETUNE.md.

By fine-tuning these pre-trained models, we rank #1 in these classification tasks (detailed in the paper):

ViT-B ViT-L ViT-H ViT-H448 prev best
ImageNet-1K (no external data) 83.6 85.9 86.9 87.8 87.1
following are evaluation of the same model weights (fine-tuned in original ImageNet-1K):
ImageNet-Corruption (error rate) 51.7 41.8 33.8 36.8 42.5
ImageNet-Adversarial 35.9 57.1 68.2 76.7 35.8
ImageNet-Rendition 48.3 59.9 64.4 66.5 48.7
ImageNet-Sketch 34.5 45.3 49.6 50.9 36.0
following are transfer learning by fine-tuning the pre-trained MAE on the target dataset:
iNaturalists 2017 70.5 75.7 79.3 83.4 75.4
iNaturalists 2018 75.4 80.1 83.0 86.8 81.2
iNaturalists 2019 80.5 83.4 85.7 88.3 84.1
Places205 63.9 65.8 65.9 66.8 66.0
Places365 57.9 59.4 59.8 60.3 58.0

Pre-training

The pre-training instruction is in PRETRAIN.md.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Owner
Meta Research
Meta Research
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022