Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Related tags

Deep LearningGOCor
Overview

Official implementation of GOCor

This is the official implementation of our paper :

GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network.
Authors: Prune Truong *, Martin Danelljan *, Luc Van Gool, Radu Timofte

[Paper][Website][Video]

The feature correlation layer serves as a key neural network module in numerous computer vision problems that involve dense correspondences between image pairs. It predicts a correspondence volume by evaluating dense scalar products between feature vectors extracted from pairs of locations in two images. However, this point-to-point feature comparison is insufficient when disambiguating multiple similar regions in an image, severely affecting the performance of the end task. This work proposes GOCor, a fully differentiable dense matching module, acting as a direct replacement to the feature correlation layer. The correspondence volume generated by our module is the result of an internal optimization procedure that explicitly accounts for similar regions in the scene. Moreover, our approach is capable of effectively learning spatial matching priors to resolve further matching ambiguities.

alt text

Also check out our related work GLU-Net and the code here !


In this repo, we only provide code to test on image pairs as well as the pre-trained weights of the networks evaluated in GOCor paper. We will not release the training code. However, since GOCor module is a plug-in replacement for the feature correlation layer, it can be integrated into any architecture and trained using the original training code. We will release general training and evaluation code in a general dense correspondence repo, coming soon here.


For any questions, issues or recommendations, please contact Prune at [email protected]

Citation

If our project is helpful for your research, please consider citing :

@inproceedings{GOCor_Truong_2020,
      title = {{GOCor}: Bringing Globally Optimized Correspondence Volumes into Your Neural Network},
      author    = {Prune Truong 
                   and Martin Danelljan 
                   and Luc Van Gool 
                   and Radu Timofte},
      year = {2020},
      booktitle = {Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
                   Processing Systems 2020, {NeurIPS} 2020}
}

1. Installation

Note that the models were trained with torch 1.0. Torch versions up to 1.7 were tested for inference but NOT for training, so I cannot guarantee that the models train smoothly for higher torch versions.

  • Create and activate conda environment with Python 3.x
conda create -n GOCor_env python=3.7
conda activate GOCor_env
  • Install all dependencies (except for cupy, see below) by running the following command:
pip install -r requirements.txt

Note: CUDA is required to run the code. Indeed, the correlation layer is implemented in CUDA using CuPy, which is why CuPy is a required dependency. It can be installed using pip install cupy or alternatively using one of the provided binary packages as outlined in the CuPy repository. The code was developed using Python 3.7 & PyTorch 1.0 & CUDA 9.0, which is why I installed cupy for cuda90. For another CUDA version, change accordingly.

pip install cupy-cuda90==7.8.0 --no-cache-dir 

There are some issues with latest versions of cupy. So for all cuda, install cupy version 7.8.0. For example, on cuda10,

pip install cupy-cuda100==7.8.0 --no-cache-dir 
  • Download an archive with pre-trained models click and extract it to the project folder

2. Models

Pre-trained weights can be downloaded from here. We provide the pre-trained weights of:

  • GLU-Net trained on the static data, these are given for reference, they correspond to the weights 'GLUNet_DPED_CityScape_ADE.pth' that we provided here
  • GLU-Net-GOCor trained on the static data, corresponds to network in the GOCor paper
  • GLU-Net trained on the dynamic data
  • GLU-Net-GOCor trained on the dynamic data, corresponds to network in the GOCor paper
  • PWC-Net finetuned on chairs-things (by us), they are given for reference
  • PWC-Net-GOCor finetuned on chair-things, corresponds to network in the GOCor paper
  • PWC-Net further finetuned on sintel (by us), for reference
  • PWC-Net-GOCor further finetuned on sintel, corresponds to network in the GOCor paper

For reference, you can also use the weights from the original PWC-Net repo, where the networks are trained on chairs-things and further finetuned on sintel. As explained in the paper, for training our PWC-Net-based models, we initialize the network parameters with the pre-trained weights trained on chairs-things.

All networks are created in 'model_selection.py'

3. Test on your own images

You can test the networks on a pair of images using test_models.py and the provided trained model weights. You must first choose the model and pre-trained weights to use. The inputs are the paths to the query and reference images. The images are then passed to the network which outputs the corresponding flow field relating the reference to the query image. The query is then warped according to the estimated flow, and a figure is saved.

For this pair of images (provided to check that the code is working properly) and using GLU-Net-GOCor trained on the dynamic dataset, the output is:

python test_models.py --model GLUNet_GOCor --pre_trained_model dynamic --path_query_image images/eth3d_query.png --path_reference_image images/eth3d_reference.png --write_dir evaluation/

additional optional arguments:
--pre_trained_models_dir (default is pre_trained_models/)

alt text

For baseline GLU-Net, the output is instead:

python test_models.py --model GLUNet --pre_trained_model dynamic --path_query_image images/eth3d_query.png --path_reference_image images/eth3d_reference.png --write_dir evaluation/

alt text

And for PWC-Net-GOCor and baseline PWC-Net:

python test_models.py --model PWCNet_GOCor --pre_trained_model chairs_things --path_query_image images/kitti2015_query.png --path_reference_image images/kitti2015_reference.png --write_dir evaluation/

alt text

python test_models.py --model PWCNet --pre_trained_model chairs_things --path_query_image images/kitti2015_query.png --path_reference_image images/kitti2015_reference.png --write_dir evaluation/

alt text


Possible model choices are : GLUNet, GLUNet_GOCor, PWCNet, PWCNet_GOCor

Possible pre-trained model choices are: static, dynamic, chairs_things, chairs_things_ft_sintel

4. Acknowledgement

We borrow code from public projects, such as pytracking, GLU-Net, DGC-Net, PWC-Net, NC-Net, Flow-Net-Pytorch, RAFT ...

Owner
Prune Truong
PhD Student in Computer Vision Lab of ETH Zurich
Prune Truong
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021