Learning to Self-Train for Semi-Supervised Few-Shot

Overview

Learning to Self-Train for Semi-Supervised Few-Shot Classification

LICENSE Python TensorFlow

This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Learning to Self-Train for Semi-Supervised Few-Shot Classification".

Check the few-shot classification leaderboard.

Summary

Installation

In order to run this repository, we advise you to install python 2.7 or 3.5 and TensorFlow 1.3.0 with Anaconda.

You may download Anaconda and read the installation instruction on their official website: https://www.anaconda.com/download/

Create a new environment and install tensorflow on it:

conda create --name lst-tf python=2.7
conda activate lst-tf
conda install tensorflow-gpu=1.3.0

Install other requirements:

pip install scipy tqdm opencv-python pillow matplotlib

Clone this repository:

git clone https://github.com/xinzheli1217/learning-to-self-train.git 
cd learning-to-self-train

Project Architecture

.
├── data_generator              # dataset generator 
|   └── meta_data_generator.py  # data genertor for meta-train phase
├── models                      # tensorflow model files 
|   ├── models.py               # resnet12 CNN class
|   └── meta_model_LST.py       # semi-supervised meta-train model class
├── trainer                     # tensorflow trianer files  
|   └── meta_LST.py             # semi-supervised meta-train trainer class
├── utils                       # a series of tools used in this repo
|   └── misc.py                 # miscellaneous tool functions
| 
├── data                        # the folder containing datasets for experiments
├── pretrain_weights_dir        # the folder containing MTL pre-training weights
├── weights_saving_dir          # the folder containing meta-training weights
├── test_output_dir             # the folder containing meta-testing files
├── filenames_and_labels        # the folder containing image file paths and labels for experiments
|
├── exp_train.py                # the python file with main function and parameter settings for meta-training
└── exp_test.py                 # the python file with main function and parameter settings for meta-testing

Running Experiments

First, download our processed images: miniImagenet[Download Page] or tieredImagenet[Download Page], move the unziped folder to ./data. And then download the pre-trained models: miniImagenet[Download Page] or tieredImagenet[Download Page], move the unziped folder to ./pretrain_weights_dir.

Training from Pre-Trained Models

Run semi-supervised meta-train phase (e.g. 𝑚𝑖𝑛𝑖ImageNet, 1-shot) :

python exp_train.py --shot_num=1 --dataset='miniImagenet' --pretrain_class_num=64 --nb_ul_samples=10 --metatrain_iterations=15000 --exp_name='LST_mini_1_shot'

Run semi-supervised meta-test phase (e.g. 𝑚𝑖𝑛𝑖ImageNet, 1-shot) :

python exp_test.py --shot_num=1 --dataset='miniImagenet' --pretrain_class_num=64 --use_distractors=False --nb_ul_samples=100 --unfiles_num=10 --test_iter=15000 --recurrent_stage_nums=6 --nums_in_folders=30 --hard_selection=20 --exp_name='LST_mini_1_shot' 

Hyperparameters and Options

There are some main hyperparameters used in the experiments, you can edit them in the exp_train.py and the exp_test.py file for meta-train and meta-test phase respectively. There are two kinds of hyperparameters: (1) common hyperparameters that shared with meta-train and meta-test, (2) test-specific hyperparameters that used for recurrent self-training process in meta-test.

  • Common hyperparameters:

    • way_num number of classes
    • shot_num number of examples per class
    • dataset dataset used in the experiment (miniImagenet or tieredImagenet)
    • pretrain_class_num number of meta-train classes
    • exp_name name for the current experiment
    • meta_batch_size number of tasks sampled per meta-update in meta-train phase
    • base_lr step size alpha for inner gradient update
    • meta_lr the meta learning rate for SS and initial model parameters
    • min_meta_lr the min meta learning rate for all meta-parameters
    • swn_lr the meta learning rate for SWN
    • nb_ul_samples number of unlabeled examples per class
    • re_train_epoch_num number of re-training inner gradient updates
    • train_base_epoch_num number of total inner gradient updates during train (meta-train only)
    • test_base_epoch_num number of total inner gradient updates during test (meta-test only)
  • Test-specific hyperparameters:

    • use_distractors if using distractor classes during meta-test
    • num_dis number of distracting classes used for meta-testing
    • unfiles_num number of unlabeled sample files used in the experiment (There are 10 unlabeled samples per class in each file)
    • recurrent_stage_nums number of recurrent stages used during meta-test
    • local_update_num number of inner gradient updates used in each recurrent stage
    • nums_in_folders number of unlabeled samples (per class) used in each recurrent stage
    • hard_selection number of remaining samples (per class) after applying hard-selection

If you want to change other settings, please see the comments and descriptions in exp_train.py and exp_test.py.

Performance

(%) 𝑚𝑖𝑛𝑖 𝒕𝒊𝒆𝒓𝒆𝒅 𝑚𝑖𝑛𝑖 (w/D) 𝒕𝒊𝒆𝒓𝒆𝒅 (w/D)
1-shot 70.1 ± 1.9 77.7 ± 1.6 64.1 ± 1.9 73.5 ± 1.6
5-shot 78.7 ± 0.8 85.2 ± 0.8 77.4 ± 1.8 83.4 ± 0.8

Citation

Please cite our paper if it is helpful to your work:

@inproceedings{li2019lst,
  title={Learning to Self-Train for Semi-Supervised Few-Shot Classification},
  author = {Li, Xinzhe and Sun, Qianru and Liu, Yaoyao and Zhou, Qin and Zheng, Shibao and Chua, Tat-Seng and Schiele, Bernt},
  booktitle={NeurIPS},
  year={2019}
}

Acknowledgements

Our implementations use the source code from the following repositories and users:

Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022